Home
Class 12
MATHS
If f(x)=|x-1| ([x]-[-x]), then find f'...

If `f(x)=|x-1| ([x]-[-x])`, then find `f'(1^+) & f'(1^-)` where [x] denotes greatest integer function

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 2 (Level-II) Multiple Correct | JEE Advanced|8 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos
  • DIFFERENTIAL EQUATION

    MOTION|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

f(x) = [x-1] + {x)^{x}, x in (1,3), then f^-1(x) is- (where [.] denotes greatest integer function and (J denotes fractional part function)

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then