Home
Class 12
MATHS
Find the range of the function f(x) =sin...

Find the range of the function f(x) `=sin^(-1)sqrt(1+x^4)/(1+5x^10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}\left(\frac{\sqrt{1+x^4}}{1+5x^{10}}\right) \), we will analyze the expression inside the inverse sine function. ### Step 1: Determine the domain of the inner function The function \( \sin^{-1}(y) \) is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need to ensure that: \[ \frac{\sqrt{1+x^4}}{1+5x^{10}} \in [0, 1] \] ### Step 2: Analyze the numerator and denominator - The numerator \( \sqrt{1+x^4} \) is always non-negative since the square root function is defined for all real numbers, and \( x^4 \) is always non-negative. - The denominator \( 1 + 5x^{10} \) is also always positive for all real \( x \). ### Step 3: Find the maximum value of the inner function To find the maximum value of \( \frac{\sqrt{1+x^4}}{1+5x^{10}} \), we can analyze its behavior as \( x \) varies: 1. As \( x \to 0 \): \[ \frac{\sqrt{1+0^4}}{1+5 \cdot 0^{10}} = \frac{\sqrt{1}}{1} = 1 \] 2. As \( x \to \infty \): \[ \frac{\sqrt{1+x^4}}{1+5x^{10}} \approx \frac{x^2}{5x^{10}} = \frac{1}{5x^8} \to 0 \] ### Step 4: Find the minimum value of the inner function Since \( \sqrt{1+x^4} \) is always greater than or equal to 1, we can conclude: \[ \frac{\sqrt{1+x^4}}{1+5x^{10}} \geq \frac{1}{1+5x^{10}} \to 0 \text{ as } x \to \infty \] Thus, the minimum value approaches 0 but never actually reaches it. ### Step 5: Determine the range of \( f(x) \) Since \( \frac{\sqrt{1+x^4}}{1+5x^{10}} \) varies from 0 to 1, the argument of the inverse sine function \( \sin^{-1}(y) \) will vary from: \[ \sin^{-1}(0) = 0 \quad \text{to} \quad \sin^{-1}(1) = \frac{\pi}{2} \] ### Conclusion Therefore, the range of the function \( f(x) \) is: \[ [0, \frac{\pi}{2}] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-I)|33 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

[" The range of the function "f(x)=sin^(-1)((sqrt(1+x^(4)))/(1+5x^(10)))" is "],[[[-(pi)/(2)*(pi)/(2)]],[0[(pi)/(3)*(pi)/(2))],[0(0,(pi)/(2)]]]

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

Find the domain and range of the function f(x)=(1)/sqrt(x-5)

The range of the function f(x)=(sqrt(1-x^(2)))/(1+|x|) is

Find the domain and range of the function f(x) = sqrt(x-1)

The range of the function f(x)=(1)/(sqrt(4+3cos x)) is

Find the range of the function f(x)=(sin^(-1)x)^3+(cos^(-1)x)^3dot

Find the range of the following functions: f(x)=[ln(sin^(-1)sqrt(x^(2)+x+1))] [.] denotes the greatest integer function.

Find the range of the function f(x)=(x^(4)-sqrt(2x)+2)/(x^(4)-sqrt(2x)+1)