Home
Class 12
MATHS
f(x) = cos^(-1){ log[sqrt[x^3+1]]}, find...

`f(x) = cos^(-1){ log[sqrt[x^3+1]]}`, find the domain and range of f(x) (where [ * ] denotes the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \cos^{-1} \left( \log \left[ \lfloor \sqrt{x^3 + 1} \rfloor \right] \right) \), we will follow these steps: ### Step 1: Determine the expression inside the logarithm The function involves \( \lfloor \sqrt{x^3 + 1} \rfloor \). First, we need to analyze the expression \( \sqrt{x^3 + 1} \). ### Step 2: Find the range of \( \sqrt{x^3 + 1} \) - As \( x \) varies, \( x^3 + 1 \) is always positive for all \( x \). - The minimum value occurs when \( x = 0 \): \[ \sqrt{0^3 + 1} = \sqrt{1} = 1 \] - As \( x \) increases, \( x^3 + 1 \) increases without bound, thus \( \sqrt{x^3 + 1} \) also increases without bound. ### Step 3: Determine the greatest integer function - The greatest integer function \( \lfloor \sqrt{x^3 + 1} \rfloor \) will take integer values starting from 1 (when \( x = 0 \)) and can take any integer value as \( x \) increases. - Therefore, \( \lfloor \sqrt{x^3 + 1} \rfloor \) can take values \( n \) where \( n \geq 1 \). ### Step 4: Find the range of the logarithm - The logarithm function \( \log(n) \) is defined for \( n > 0 \). - Since \( \lfloor \sqrt{x^3 + 1} \rfloor \geq 1 \), we have: \[ \log(\lfloor \sqrt{x^3 + 1} \rfloor) \geq \log(1) = 0 \] - As \( n \) increases, \( \log(n) \) also increases without bound. Thus: \[ \log(\lfloor \sqrt{x^3 + 1} \rfloor) \text{ can take any value } [0, \infty) \] ### Step 5: Determine the domain of the cosine inverse function - The function \( \cos^{-1}(y) \) is defined for \( y \) in the range \( [-1, 1] \). - Therefore, we need: \[ 0 \leq \log(\lfloor \sqrt{x^3 + 1} \rfloor) \leq 1 \] - This implies: \[ 1 \leq \lfloor \sqrt{x^3 + 1} \rfloor \leq e \] - Since \( \lfloor \sqrt{x^3 + 1} \rfloor \) can take integer values, the possible values are \( 1, 2 \). ### Step 6: Find the corresponding \( x \) values - For \( \lfloor \sqrt{x^3 + 1} \rfloor = 1 \): \[ 1 \leq \sqrt{x^3 + 1} < 2 \implies 1 \leq x^3 + 1 < 4 \implies 0 \leq x^3 < 3 \implies 0 \leq x < \sqrt[3]{3} \] - For \( \lfloor \sqrt{x^3 + 1} \rfloor = 2 \): \[ 2 \leq \sqrt{x^3 + 1} < 3 \implies 4 \leq x^3 + 1 < 9 \implies 3 \leq x^3 < 8 \implies \sqrt[3]{3} \leq x < 2 \] ### Step 7: Combine the intervals for the domain - Therefore, the domain of \( f(x) \) is: \[ [0, \sqrt[3]{3}) \cup [\sqrt[3]{3}, 2) = [0, 2) \] ### Step 8: Determine the range of \( f(x) \) - When \( \lfloor \sqrt{x^3 + 1} \rfloor = 1 \): \[ f(x) = \cos^{-1}(0) = \frac{\pi}{2} \] - When \( \lfloor \sqrt{x^3 + 1} \rfloor = 2 \): \[ f(x) = \cos^{-1}(\log(2)) \] - Therefore, the range of \( f(x) \) is: \[ \left[ \cos^{-1}(\log(2)), \frac{\pi}{2} \right] \] ### Final Answer - **Domain**: \( [0, 2) \) - **Range**: \( \left[ \cos^{-1}(\log(2)), \frac{\pi}{2} \right] \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-I)|33 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=log[cos|x|+(1)/(2)], where [.] denotes the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Find the domain and range of f(x)= log(1/sqrt([cosx]-[sinx])) . [.] denotes the greatest integar function.

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is