Home
Class 12
MATHS
Find the inverse of the function f(x) = ...

Find the inverse of the function `f(x) = In (x^2 + 3x + 1), x in [1, 3]` and assuming it to be an onto function.

Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-I)|33 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the function: f(x)={x^3-1, ,x<2x^2+3,xgeq2

Find the range of function f(x)=1+3cos2x

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function f(x)=sin^(-1)(2x-3)

Computer the inverse of the function : f (x) = (1+x)/(1-x)

Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

Find the domain of the function f(x)=(x^(2)+1)//(x^(2)-3x+3) .

Compute the inverse of the functions: (a) f(x)=In(x+sqrt(x² +1))

Find the domain of the function : f(x)=(x^(3)-5x+3)/(x^(2)-1)

Find the inverse of the following functions(i) f(x)=sin^(-1)((x)/(3))x in[-3,3]