Home
Class 12
MATHS
A function f: [3/2, oo) to [ 7/4, oo) de...

A function f: `[3/2, oo) to [ 7/4, oo)` defined as, `f(x) = x^2 - 3x +4.` Then compute `f^(-1)(x)` and find the solution of the equation, `f(x) = f^(-1) (x)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-I)|33 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

If f : [0, oo) rarr [2, oo) be defined by f(x) = x^(2) + 2, AA xx in R . Then find f^(-1) .

Let a function f:(2,oo)rarr[0,oo)"defined as " f(x) = (|x-3|)/(|x-2|), then f is

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

The function f:(-oo, 1] rarr (0, e^(5)] defined as f(x)=e^(x^(3)+2) is

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is