Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int_(-1)^(1)x^(3)|x|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-1}^{1} x^{3} |x| \, dx \), we will break it down into two parts based on the definition of the absolute value function. ### Step 1: Understand the Absolute Value Function The absolute value function \( |x| \) can be defined as: - \( |x| = x \) when \( x \geq 0 \) - \( |x| = -x \) when \( x < 0 \) ### Step 2: Break the Integral into Two Parts Since the integral is from \(-1\) to \(1\), we will split it at \(0\): \[ \int_{-1}^{1} x^{3} |x| \, dx = \int_{-1}^{0} x^{3} |x| \, dx + \int_{0}^{1} x^{3} |x| \, dx \] ### Step 3: Evaluate Each Integral Separately 1. **For the interval \([-1, 0]\)**: Here, \( |x| = -x \), so: \[ \int_{-1}^{0} x^{3} |x| \, dx = \int_{-1}^{0} x^{3} (-x) \, dx = \int_{-1}^{0} -x^{4} \, dx \] 2. **For the interval \([0, 1]\)**: Here, \( |x| = x \), so: \[ \int_{0}^{1} x^{3} |x| \, dx = \int_{0}^{1} x^{3} x \, dx = \int_{0}^{1} x^{4} \, dx \] ### Step 4: Combine the Integrals Now we can combine the two integrals: \[ \int_{-1}^{1} x^{3} |x| \, dx = \int_{-1}^{0} -x^{4} \, dx + \int_{0}^{1} x^{4} \, dx \] ### Step 5: Evaluate Each Integral 1. **Evaluate \( \int_{-1}^{0} -x^{4} \, dx \)**: \[ \int -x^{4} \, dx = -\frac{x^{5}}{5} \Bigg|_{-1}^{0} = -\left(0 - \left(-\frac{(-1)^{5}}{5}\right)\right) = -\left(0 + \frac{1}{5}\right) = -\frac{1}{5} \] 2. **Evaluate \( \int_{0}^{1} x^{4} \, dx \)**: \[ \int x^{4} \, dx = \frac{x^{5}}{5} \Bigg|_{0}^{1} = \frac{1^{5}}{5} - \frac{0^{5}}{5} = \frac{1}{5} - 0 = \frac{1}{5} \] ### Step 6: Combine the Results Now we can combine the results of the two integrals: \[ \int_{-1}^{1} x^{3} |x| \, dx = -\frac{1}{5} + \frac{1}{5} = 0 \] ### Final Answer Thus, the value of the integral \( \int_{-1}^{1} x^{3} |x| \, dx \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int_(-1)^(1)e^(|x|)dx

Evaluate the following integral: int_(1)^(3)|x^(2)-4|dx

Evaluate the following integral: int_(-3)^3|x+1|dx

Evaluate the following integral: int_(-1)^1|2x+1|dx

Evaluate the following integral: int_(-2)^2|x+1|dx

Evaluate the following integral: int_(0)^(1)|2x-1|dx

Evaluate the following Integrals : int (dx)/(1+x^(3))

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integral : int(1)/(x^(4)+1)dx

CBSE COMPLEMENTARY MATERIAL-INTEGRALS-SIX MARK QUESTIONS
  1. Evaluate the following integrals: int(-1)^(1)x^(3)|x|dx

    Text Solution

    |

  2. int(x^5+4)/(x^5-x)dx

    Text Solution

    |

  3. int(2e^t)/(e^(3t)-6e^(2t)+11 e^t-6)dt

    Text Solution

    |

  4. int(2x^3)/((x+1)(x-3)^2)dx

    Text Solution

    |

  5. Evaluate the following integrals: int(1+sinx)/(sin x(1+cosx))dx

    Text Solution

    |

  6. int(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))dx

    Text Solution

    |

  7. Evaluate: int0^1xsqrt((1-x^2)/(1+x^2))dx

    Text Solution

    |

  8. Evaluate the following integrals: int(0)^(pi//2) (cosx)/(1+cos x+sin...

    Text Solution

    |

  9. Evaluate the following integrals as limit of sums: int(2)^(4)(2x+1)d...

    Text Solution

    |

  10. Evaluate the following integrals as limit of sums: int(0)^(2)(x^(2)+...

    Text Solution

    |

  11. Evaluate the following integrals as limit of sums: int(1)^(3)(3x^(2)...

    Text Solution

    |

  12. Evaluate the following integrals as limit of sums: int(0)^(4)(3x^(2)...

    Text Solution

    |

  13. Evaluate the following integrals as limit of sums: int(0)^(1)e^(2-3x...

    Text Solution

    |

  14. Evaluate the following integrals as limit of sums: int(0)^(1)(3x^(2)...

    Text Solution

    |

  15. Evaluate: int1/((sinx-2cosx)(2sinx+cosx)dx

    Text Solution

    |

  16. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  17. int(0)^(pi//2) (2logsin x - log sin 2x) dx=

    Text Solution

    |

  18. Evaluate: int0^1x(tan^(-1)x)^2dx

    Text Solution

    |

  19. Prove that: int(0)^(pi//2) log (sin x) dx =int(0)^(pi//2) log (cos x)...

    Text Solution

    |

  20. Prove that int0^1tan^(-1)(1/(1-x+x^2))dx=2int0^1tan^(-1)x dxdot Henc...

    Text Solution

    |

  21. Evaluate : int0^(pi/2)(sin^2x)/(s in x+cos x)dx

    Text Solution

    |