Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int_(-2)^(2) (dx)/(1+|x-1|)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_{-2}^{2} \frac{dx}{1 + |x - 1|}, \] we first need to understand the behavior of the absolute value function \(|x - 1|\). ### Step 1: Analyze the absolute value function The expression \(|x - 1|\) can be defined piecewise: - For \(x < 1\), \(|x - 1| = -(x - 1) = -x + 1\). - For \(x \geq 1\), \(|x - 1| = x - 1\). ### Step 2: Split the integral at the point where the absolute value changes The integral from \(-2\) to \(2\) can be split into two parts: \[ \int_{-2}^{2} \frac{dx}{1 + |x - 1|} = \int_{-2}^{1} \frac{dx}{1 + (-x + 1)} + \int_{1}^{2} \frac{dx}{1 + (x - 1)}. \] ### Step 3: Simplify each integral 1. For the first integral from \(-2\) to \(1\): \[ \int_{-2}^{1} \frac{dx}{1 + (-x + 1)} = \int_{-2}^{1} \frac{dx}{2 - x}. \] 2. For the second integral from \(1\) to \(2\): \[ \int_{1}^{2} \frac{dx}{1 + (x - 1)} = \int_{1}^{2} \frac{dx}{x}. \] ### Step 4: Evaluate the first integral To evaluate \(\int_{-2}^{1} \frac{dx}{2 - x}\): \[ \int \frac{dx}{2 - x} = -\ln|2 - x| + C. \] Now, applying the limits: \[ \left[-\ln|2 - x|\right]_{-2}^{1} = -\ln|2 - 1| + \ln|2 - (-2)| = -\ln(1) + \ln(4) = 0 + \ln(4) = \ln(4). \] ### Step 5: Evaluate the second integral To evaluate \(\int_{1}^{2} \frac{dx}{x}\): \[ \int \frac{dx}{x} = \ln|x| + C. \] Now, applying the limits: \[ \left[\ln|x|\right]_{1}^{2} = \ln(2) - \ln(1) = \ln(2) - 0 = \ln(2). \] ### Step 6: Combine the results Now, we combine the results of both integrals: \[ \int_{-2}^{2} \frac{dx}{1 + |x - 1|} = \ln(4) + \ln(2) = \ln(4 \cdot 2) = \ln(8). \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{2} \frac{dx}{1 + |x - 1|} = \ln(8). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_(-2)^2x e^(|x|)dx

Evaluate the following integral: int_(-2)^2|x+1|dx

Evaluate the following integral: int_(0)^(1)|2x-1|dx

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integrals: int_(-1)^(1)e^(|x|)dx

Evaluate the following integral: int_(-1)^1|2x+1|dx

Evaluate the following integral: int_(-1)^2|2x+3|dx

Evaluate the following integrals: int_(-1)^(1)x^(3)|x|dx

Evaluate the following integrals : int(1)/(1+cos2x)dx

CBSE COMPLEMENTARY MATERIAL-INTEGRALS-SIX MARK QUESTIONS
  1. Evaluate the following integrals: int(-2)^(2) (dx)/(1+|x-1|)

    Text Solution

    |

  2. int(x^5+4)/(x^5-x)dx

    Text Solution

    |

  3. int(2e^t)/(e^(3t)-6e^(2t)+11 e^t-6)dt

    Text Solution

    |

  4. int(2x^3)/((x+1)(x-3)^2)dx

    Text Solution

    |

  5. Evaluate the following integrals: int(1+sinx)/(sin x(1+cosx))dx

    Text Solution

    |

  6. int(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))dx

    Text Solution

    |

  7. Evaluate: int0^1xsqrt((1-x^2)/(1+x^2))dx

    Text Solution

    |

  8. Evaluate the following integrals: int(0)^(pi//2) (cosx)/(1+cos x+sin...

    Text Solution

    |

  9. Evaluate the following integrals as limit of sums: int(2)^(4)(2x+1)d...

    Text Solution

    |

  10. Evaluate the following integrals as limit of sums: int(0)^(2)(x^(2)+...

    Text Solution

    |

  11. Evaluate the following integrals as limit of sums: int(1)^(3)(3x^(2)...

    Text Solution

    |

  12. Evaluate the following integrals as limit of sums: int(0)^(4)(3x^(2)...

    Text Solution

    |

  13. Evaluate the following integrals as limit of sums: int(0)^(1)e^(2-3x...

    Text Solution

    |

  14. Evaluate the following integrals as limit of sums: int(0)^(1)(3x^(2)...

    Text Solution

    |

  15. Evaluate: int1/((sinx-2cosx)(2sinx+cosx)dx

    Text Solution

    |

  16. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  17. int(0)^(pi//2) (2logsin x - log sin 2x) dx=

    Text Solution

    |

  18. Evaluate: int0^1x(tan^(-1)x)^2dx

    Text Solution

    |

  19. Prove that: int(0)^(pi//2) log (sin x) dx =int(0)^(pi//2) log (cos x)...

    Text Solution

    |

  20. Prove that int0^1tan^(-1)(1/(1-x+x^2))dx=2int0^1tan^(-1)x dxdot Henc...

    Text Solution

    |

  21. Evaluate : int0^(pi/2)(sin^2x)/(s in x+cos x)dx

    Text Solution

    |