Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int (e^(x))/(a^(x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{e^x}{a^x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integrand. Notice that \( a^x \) can be expressed as \( e^{x \ln a} \). Thus, we can rewrite the integral as: \[ \int \frac{e^x}{a^x} \, dx = \int \frac{e^x}{e^{x \ln a}} \, dx = \int e^{x(1 - \ln a)} \, dx \] ### Step 2: Apply the Integral Formula Now we can apply the formula for the integral of an exponential function: \[ \int e^{kx} \, dx = \frac{1}{k} e^{kx} + C \] where \( k = 1 - \ln a \). Therefore, we have: \[ \int e^{x(1 - \ln a)} \, dx = \frac{1}{1 - \ln a} e^{x(1 - \ln a)} + C \] ### Step 3: Substitute Back Now we substitute back to express the answer in terms of \( a \): \[ = \frac{1}{1 - \ln a} e^{x(1 - \ln a)} + C = \frac{1}{1 - \ln a} \cdot \frac{e^x}{a^x} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^x}{a^x} \, dx = \frac{e^x}{a^x (1 - \ln a)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

EXAMPLE 3 -Evaluate the following integrals: (i) int(e^(x)-1)/(e^(x)+1)dx(ii)int(5^(x)+1)/(5^(x)-1)dx

Evaluate the following integrals: int e^(-logx)dx

Evaluate the following integral: int_0^1(e^x)/(1+e^(2x))dx

Evaluate the following integrals: inte^(sqrt(x))dx

Evaluate the following integrals: int(sin^(-1)x)/(x^(2))dx

Evaluate the following integrals: int (x)/(sqrt(x+1))dx

Evaluate the following integrals: int(x^(e)+e^(x)+e^(e))dx

Evaluate the following integrals: inte^(x)*(x)/((1+x)^(2))dx

Evaluate the following integrals int (x dx)/(9-16x^(4))

Evaluate the following integrals int sqrt((a-x)/(x-b))dx

CBSE COMPLEMENTARY MATERIAL-INTEGRALS-SIX MARK QUESTIONS
  1. Evaluate the following integrals: int (e^(x))/(a^(x))dx

    Text Solution

    |

  2. int(x^5+4)/(x^5-x)dx

    Text Solution

    |

  3. int(2e^t)/(e^(3t)-6e^(2t)+11 e^t-6)dt

    Text Solution

    |

  4. int(2x^3)/((x+1)(x-3)^2)dx

    Text Solution

    |

  5. Evaluate the following integrals: int(1+sinx)/(sin x(1+cosx))dx

    Text Solution

    |

  6. int(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))dx

    Text Solution

    |

  7. Evaluate: int0^1xsqrt((1-x^2)/(1+x^2))dx

    Text Solution

    |

  8. Evaluate the following integrals: int(0)^(pi//2) (cosx)/(1+cos x+sin...

    Text Solution

    |

  9. Evaluate the following integrals as limit of sums: int(2)^(4)(2x+1)d...

    Text Solution

    |

  10. Evaluate the following integrals as limit of sums: int(0)^(2)(x^(2)+...

    Text Solution

    |

  11. Evaluate the following integrals as limit of sums: int(1)^(3)(3x^(2)...

    Text Solution

    |

  12. Evaluate the following integrals as limit of sums: int(0)^(4)(3x^(2)...

    Text Solution

    |

  13. Evaluate the following integrals as limit of sums: int(0)^(1)e^(2-3x...

    Text Solution

    |

  14. Evaluate the following integrals as limit of sums: int(0)^(1)(3x^(2)...

    Text Solution

    |

  15. Evaluate: int1/((sinx-2cosx)(2sinx+cosx)dx

    Text Solution

    |

  16. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  17. int(0)^(pi//2) (2logsin x - log sin 2x) dx=

    Text Solution

    |

  18. Evaluate: int0^1x(tan^(-1)x)^2dx

    Text Solution

    |

  19. Prove that: int(0)^(pi//2) log (sin x) dx =int(0)^(pi//2) log (cos x)...

    Text Solution

    |

  20. Prove that int0^1tan^(-1)(1/(1-x+x^2))dx=2int0^1tan^(-1)x dxdot Henc...

    Text Solution

    |

  21. Evaluate : int0^(pi/2)(sin^2x)/(s in x+cos x)dx

    Text Solution

    |