Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int (1)/(x (2+3 log x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{x(2 + 3 \log x)} \, dx \), we can follow these steps: ### Step 1: Substitution Let's make a substitution to simplify the integral. We set: \[ t = 2 + 3 \log x \] Next, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 3 \cdot \frac{1}{x} \implies dt = \frac{3}{x} \, dx \implies dx = \frac{x}{3} \, dt \] ### Step 2: Express \( x \) in terms of \( t \) From our substitution, we can express \( \log x \) in terms of \( t \): \[ \log x = \frac{t - 2}{3} \implies x = e^{\frac{t - 2}{3}} \] ### Step 3: Substitute into the integral Now we can substitute \( x \) and \( dx \) back into the integral: \[ \int \frac{1}{x(2 + 3 \log x)} \, dx = \int \frac{1}{x \cdot t} \cdot \frac{x}{3} \, dt \] The \( x \) cancels out: \[ = \int \frac{1}{3t} \, dt = \frac{1}{3} \int \frac{1}{t} \, dt \] ### Step 4: Integrate The integral of \( \frac{1}{t} \) is: \[ \frac{1}{3} \log |t| + C \] ### Step 5: Substitute back for \( t \) Now we substitute back \( t = 2 + 3 \log x \): \[ = \frac{1}{3} \log |2 + 3 \log x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x(2 + 3 \log x)} \, dx = \frac{1}{3} \log |2 + 3 \log x| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int ((x+1))/(x) (x+log x)dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integrals: int_(1)^(2)(1)/(x(1+log x)^(2))dx

Evaluate the following integral: int_1^2|x-3|dx

Evaluate the following integrals: int(x)/((x+1)^(2))dx

Evaluate the following Integrals. int (log x)/(x)dx

Evaluate the following integral: int_(-1)^2|2x+3|dx

Evaluate the following integrals: int(log(x+2))/((x+2)^(2))dx