Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int_(0)^(2)[x]dx` where `[x]` is greatest integers function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{2} [x] \, dx \), where \([x]\) is the greatest integer function, we can break the integral into two parts based on the behavior of the greatest integer function over the interval from 0 to 2. ### Step-by-Step Solution: 1. **Understanding the Greatest Integer Function**: The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). - For \(0 \leq x < 1\), \([x] = 0\). - For \(1 \leq x < 2\), \([x] = 1\). 2. **Breaking the Integral**: We can split the integral at \(x = 1\): \[ \int_{0}^{2} [x] \, dx = \int_{0}^{1} [x] \, dx + \int_{1}^{2} [x] \, dx \] 3. **Evaluating the First Integral**: For the interval \(0 \leq x < 1\): \[ \int_{0}^{1} [x] \, dx = \int_{0}^{1} 0 \, dx = 0 \] 4. **Evaluating the Second Integral**: For the interval \(1 \leq x < 2\): \[ \int_{1}^{2} [x] \, dx = \int_{1}^{2} 1 \, dx \] This integral evaluates to: \[ = [x]_{1}^{2} = 2 - 1 = 1 \] 5. **Combining the Results**: Now, we combine the results from both integrals: \[ \int_{0}^{2} [x] \, dx = 0 + 1 = 1 \] ### Final Answer: Thus, the value of the integral \( \int_{0}^{2} [x] \, dx \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(3)[x]dx= . . . ., where [x] is greatest integer funcction.

int_(-2)^(2)[x^(2)]dx (where [.] greatest integer function)

int_0^1.5 [x] dx=___ where [x] is greatest integer function.

int_(0)^(4)x [x] dx= ( where [.] denotes greatest integer function

int_(0)^(x) dx = "……." , where [x] is greatest integer function.

int_(0)^(4)2^(x)dx= where [1 is the greatest integer function is

CBSE COMPLEMENTARY MATERIAL-INTEGRALS-SIX MARK QUESTIONS
  1. Evaluate the following integrals: int(0)^(2)[x]dx where [x] is great...

    Text Solution

    |

  2. int(x^5+4)/(x^5-x)dx

    Text Solution

    |

  3. int(2e^t)/(e^(3t)-6e^(2t)+11 e^t-6)dt

    Text Solution

    |

  4. int(2x^3)/((x+1)(x-3)^2)dx

    Text Solution

    |

  5. Evaluate the following integrals: int(1+sinx)/(sin x(1+cosx))dx

    Text Solution

    |

  6. int(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))dx

    Text Solution

    |

  7. Evaluate: int0^1xsqrt((1-x^2)/(1+x^2))dx

    Text Solution

    |

  8. Evaluate the following integrals: int(0)^(pi//2) (cosx)/(1+cos x+sin...

    Text Solution

    |

  9. Evaluate the following integrals as limit of sums: int(2)^(4)(2x+1)d...

    Text Solution

    |

  10. Evaluate the following integrals as limit of sums: int(0)^(2)(x^(2)+...

    Text Solution

    |

  11. Evaluate the following integrals as limit of sums: int(1)^(3)(3x^(2)...

    Text Solution

    |

  12. Evaluate the following integrals as limit of sums: int(0)^(4)(3x^(2)...

    Text Solution

    |

  13. Evaluate the following integrals as limit of sums: int(0)^(1)e^(2-3x...

    Text Solution

    |

  14. Evaluate the following integrals as limit of sums: int(0)^(1)(3x^(2)...

    Text Solution

    |

  15. Evaluate: int1/((sinx-2cosx)(2sinx+cosx)dx

    Text Solution

    |

  16. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  17. int(0)^(pi//2) (2logsin x - log sin 2x) dx=

    Text Solution

    |

  18. Evaluate: int0^1x(tan^(-1)x)^2dx

    Text Solution

    |

  19. Prove that: int(0)^(pi//2) log (sin x) dx =int(0)^(pi//2) log (cos x)...

    Text Solution

    |

  20. Prove that int0^1tan^(-1)(1/(1-x+x^2))dx=2int0^1tan^(-1)x dxdot Henc...

    Text Solution

    |

  21. Evaluate : int0^(pi/2)(sin^2x)/(s in x+cos x)dx

    Text Solution

    |