Home
Class 12
MATHS
Evaluate : int(sqrt(x+1)-sqrt(x-1))/(...

Evaluate :
`int(sqrt(x+1)-sqrt(x-1))/(sqrt(x+1)+sqrt(x-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt{x+1} + \sqrt{x-1}} \, dx, \] we will follow these steps: ### Step 1: Rationalize the Numerator We start by rationalizing the numerator. We multiply and divide by the conjugate of the numerator: \[ \int \frac{(\sqrt{x+1} - \sqrt{x-1})(\sqrt{x+1} - \sqrt{x-1})}{(\sqrt{x+1} + \sqrt{x-1})(\sqrt{x+1} - \sqrt{x-1})} \, dx. \] This gives us: \[ \int \frac{(\sqrt{x+1} - \sqrt{x-1})^2}{(\sqrt{x+1})^2 - (\sqrt{x-1})^2} \, dx. \] ### Step 2: Simplify the Denominator The denominator simplifies as follows: \[ (\sqrt{x+1})^2 - (\sqrt{x-1})^2 = (x+1) - (x-1) = 2. \] So we rewrite the integral: \[ \int \frac{(\sqrt{x+1} - \sqrt{x-1})^2}{2} \, dx = \frac{1}{2} \int (\sqrt{x+1} - \sqrt{x-1})^2 \, dx. \] ### Step 3: Expand the Numerator Next, we expand the numerator: \[ (\sqrt{x+1} - \sqrt{x-1})^2 = (\sqrt{x+1})^2 - 2\sqrt{x+1}\sqrt{x-1} + (\sqrt{x-1})^2 = (x+1) - 2\sqrt{(x+1)(x-1)} + (x-1). \] This simplifies to: \[ 2x - 2\sqrt{(x+1)(x-1)} = 2x - 2\sqrt{x^2 - 1}. \] ### Step 4: Substitute Back into the Integral Substituting this back into the integral, we have: \[ \frac{1}{2} \int (2x - 2\sqrt{x^2 - 1}) \, dx = \int (x - \sqrt{x^2 - 1}) \, dx. \] ### Step 5: Split the Integral We can split the integral into two parts: \[ \int x \, dx - \int \sqrt{x^2 - 1} \, dx. \] ### Step 6: Evaluate Each Integral 1. The first integral: \[ \int x \, dx = \frac{x^2}{2}. \] 2. The second integral can be evaluated using the formula: \[ \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + C. \] For \(a = 1\): \[ \int \sqrt{x^2 - 1} \, dx = \frac{x}{2} \sqrt{x^2 - 1} - \frac{1}{2} \log(x + \sqrt{x^2 - 1}). \] ### Step 7: Combine the Results Putting it all together, we have: \[ \int \frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt{x+1} + \sqrt{x-1}} \, dx = \frac{x^2}{2} - \left( \frac{x}{2} \sqrt{x^2 - 1} - \frac{1}{2} \log(x + \sqrt{x^2 - 1}) \right) + C. \] ### Final Answer Thus, the final answer is: \[ \frac{x^2}{2} - \frac{x}{2} \sqrt{x^2 - 1} + \frac{1}{2} \log(x + \sqrt{x^2 - 1}) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int(1/sqrt(x)-sqrt(x))dx

int(dx)/(sqrt(x+1)+sqrt(x-1))

int(1)/(sqrt(x)+sqrt(x-1))dx

Evaluate: int(sqrt(a)-sqrt(x))/(1-sqrt(a x))\ dx

Evaluate: int(1)/(sqrt(x)+sqrt(x+1))dx

int(sqrt(x)+1/sqrt(x))dx

int(1)/(sqrt(x+1)+sqrt(x))dx

int(1)/(sqrt(x+1)+sqrt(x))dx

Evaluate: int sqrt((1-sqrt(x))/(1+sqrt(x)))dx

int(dx)/(sqrt(x+1)-sqrt(x))