Home
Class 12
MATHS
Evaluate : int(cos(x+a))/(cos(x-a))dx...

Evaluate :
`int(cos(x+a))/(cos(x-a))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\cos(x + a)}{\cos(x - a)} \, dx, \] we can follow these steps: ### Step 1: Substitution Let \( t = x - a \). Then, we have: \[ x = t + a \quad \text{and} \quad dx = dt. \] ### Step 2: Rewrite the Integral Now, substituting \( x \) in the integral, we get: \[ \int \frac{\cos((t + a) + a)}{\cos(t)} \, dt = \int \frac{\cos(t + 2a)}{\cos(t)} \, dt. \] ### Step 3: Use the Cosine Addition Formula Using the cosine addition formula, \( \cos(t + 2a) = \cos(t)\cos(2a) - \sin(t)\sin(2a) \), we can rewrite the integral: \[ \int \frac{\cos(t)\cos(2a) - \sin(t)\sin(2a)}{\cos(t)} \, dt. \] ### Step 4: Split the Integral This can be split into two separate integrals: \[ \int \cos(2a) \, dt - \int \sin(2a) \tan(t) \, dt. \] ### Step 5: Evaluate the First Integral The first integral is straightforward: \[ \int \cos(2a) \, dt = \cos(2a) t + C_1. \] ### Step 6: Evaluate the Second Integral For the second integral, we have: \[ -\sin(2a) \int \tan(t) \, dt. \] The integral of \( \tan(t) \) is: \[ \int \tan(t) \, dt = -\log|\cos(t)| + C_2. \] Thus, we have: \[ -\sin(2a)(-\log|\cos(t)|) = \sin(2a) \log|\cos(t)| + C_2. \] ### Step 7: Combine the Results Combining both integrals, we get: \[ \cos(2a) t + \sin(2a) \log|\cos(t)| + C, \] where \( C = C_1 + C_2 \). ### Step 8: Substitute Back Now, substituting back \( t = x - a \): \[ \cos(2a)(x - a) + \sin(2a) \log|\cos(x - a)| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{\cos(x + a)}{\cos(x - a)} \, dx = (x - a) \cos(2a) + \sin(2a) \log|\cos(x - a)| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int(cos (x-a))/(cos(x-b))dx=

int(cos x)/(cos(x-a))dx

int(cos(x-a))/(cos x)dx

I=int(cos(x-a))/(cos x)dx

Evaluate : int(cos(x-alpha))/(cosx)dx .

int(cos(x+a)dx)/cos(x+b)

int(cos x)/(cos(x+a))dx

int(cos x)/(cos(x+alpha))dx

Evaluate: int(1)/(cos(x-a)cos(x-b))dx

Evaluate: int(cos x)/(cos3x)dx