Home
Class 12
MATHS
Evaluate : int tan 2x tan 3x tan 5x d...

Evaluate :
`int tan 2x tan 3x tan 5x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \tan 2x \tan 3x \tan 5x \, dx \), we can use a trigonometric identity to simplify the expression. Here's a step-by-step solution: ### Step 1: Rewrite \( \tan 5x \) We can express \( \tan 5x \) using the angle addition formula: \[ \tan 5x = \tan(2x + 3x) = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x} \] ### Step 2: Substitute into the integral Substituting this expression into the integral gives us: \[ I = \int \tan 2x \tan 3x \left( \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x} \right) \, dx \] ### Step 3: Simplify the integral Now, we can distribute \( \tan 2x \tan 3x \): \[ I = \int \frac{\tan^2 2x + \tan^2 3x}{1 - \tan 2x \tan 3x} \, dx \] ### Step 4: Split the integral We can split the integral into two parts: \[ I = \int \frac{\tan^2 2x}{1 - \tan 2x \tan 3x} \, dx + \int \frac{\tan^2 3x}{1 - \tan 2x \tan 3x} \, dx \] ### Step 5: Integrate each part To integrate each part, we will need to use the identity \( \tan^2 x = \sec^2 x - 1 \): 1. For \( \int \frac{\tan^2 2x}{1 - \tan 2x \tan 3x} \, dx \), we can use substitution or integration techniques. 2. Similarly for \( \int \frac{\tan^2 3x}{1 - \tan 2x \tan 3x} \, dx \). ### Step 6: Final integration After integrating both parts, we will combine the results and add the constant of integration \( C \). ### Final Answer Thus, the evaluated integral is: \[ I = \frac{1}{5} \log |\sec 5x| - \frac{1}{2} \log |\sec 2x| - \frac{1}{3} \log |\sec 3x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int tan2x tan3x tan5xdx

int tan2x tan3x tan5xdx

Evaluate: int tan2x tan3x tan5xdx

Evaluate: int tan x tan2x tan3xdx

tan 5x tan3x tan2x=

int tan x tan2x tan3xdx=

Evaluate int tanx tan 2x tan 3x dx .

int tan x tan2x tan3xdx

Evaluate : int tan(x+a)dx