Home
Class 12
MATHS
Evaluate : int sin^(2)xcos^(4)xdx...

Evaluate :
`int sin^(2)xcos^(4)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sin^2 x \cos^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We can express \( \cos^4 x \) as \( \cos^2 x \cdot \cos^2 x \): \[ \int \sin^2 x \cos^4 x \, dx = \int \sin^2 x \cos^2 x \cos^2 x \, dx \] ### Step 2: Use the identity for \( \sin^2 x \cos^2 x \) We know that: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \] Thus, we can rewrite the integral as: \[ \int \sin^2 x \cos^4 x \, dx = \int \frac{1}{4} \sin^2(2x) \cos^2 x \, dx \] ### Step 3: Introduce a factor of \( \frac{1}{8} \) To facilitate integration, we multiply and divide by 8: \[ = \frac{1}{8} \int 8 \sin^2 x \cos^2 x \cos^2 x \, dx \] ### Step 4: Substitute \( u = 2x \) Let \( u = 2x \), then \( du = 2dx \) or \( dx = \frac{du}{2} \): \[ = \frac{1}{8} \int 4 \sin^2 x \cos^2 x \cdot \cos^2 x \cdot \frac{du}{2} \] ### Step 5: Simplify the integral Now we can use the double angle identity for sine: \[ = \frac{1}{16} \int 4 \sin^2 x \cos^2 x \, \cos^2 x \, du \] ### Step 6: Expand the integral Using \( \cos^2 x = \frac{1 + \cos(2x)}{2} \): \[ = \frac{1}{16} \int (1 - \cos(4x))(1 + \cos(2x)) \, dx \] ### Step 7: Distribute and integrate Distributing gives: \[ = \frac{1}{16} \left( \int (1 - \cos(4x) + \cos(2x) - \frac{1}{2} \cos(6x)) \, dx \right) \] ### Step 8: Integrate each term separately The integral of \( 1 \) is \( x \), the integral of \( \cos(kx) \) is \( \frac{\sin(kx)}{k} \): \[ = \frac{1}{16} \left( x - \frac{1}{4} \sin(4x) + \frac{1}{2} \sin(2x) - \frac{1}{12} \sin(6x) + C \right) \] ### Step 9: Combine and simplify Now we can combine the results: \[ = \frac{1}{16} x - \frac{1}{64} \sin(4x) + \frac{1}{32} \sin(2x) - \frac{1}{192} \sin(6x) + C \] ### Final Answer Thus, the final answer is: \[ \frac{1}{16} x - \frac{1}{64} \sin(4x) + \frac{1}{32} \sin(2x) - \frac{1}{192} \sin(6x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int sin^(2)x cos^(4)xdx

int sin^(5)xcos^(5)xdx=

Evaluate : intsin^(2)xcos^(5)xdx .

Evaluate: int x sin^(2)xdx

Evaluate: int x sin^(2)xdx

Evaluate: int sin^(4)x cos^(4)xdx

Evaluate: int sin^(3)x cos^(4)xdx

Evaluate: intsin^(4)xcos^(2)xdx

Evaluate: int sin^(4)2xdx

Evaluate: int sin^(-1)xdx