Home
Class 12
MATHS
Evaluate : int cot^(3)x cosec^(4)x dx...

Evaluate :
`int cot^(3)x cosec^(4)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cot^3 x \csc^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \cot^3 x \csc^4 x \, dx \] We can express \( \csc^4 x \) as \( \csc^2 x \cdot \csc^2 x \) and rewrite the integral as: \[ \int \cot^3 x \csc^2 x \cdot \csc^2 x \, dx \] Using the identity \( \csc^2 x = 1 + \cot^2 x \), we can rewrite \( \csc^2 x \): \[ \int \cot^3 x (1 + \cot^2 x) \csc^2 x \, dx \] ### Step 2: Expand the integral Now we can expand the integral: \[ \int \cot^3 x \csc^2 x \, dx + \int \cot^5 x \csc^2 x \, dx \] ### Step 3: Substitution Let \( t = \cot x \). Then, the derivative \( dt = -\csc^2 x \, dx \) implies that \( dx = -\frac{dt}{\csc^2 x} \). We can substitute this into the integral: \[ \int t^3 (-dt) + \int t^5 (-dt) \] This simplifies to: \[ -\int t^3 \, dt - \int t^5 \, dt \] ### Step 4: Integrate Now we can integrate each term: \[ -\left( \frac{t^4}{4} + \frac{t^6}{6} \right) + C \] This gives us: \[ -\frac{t^4}{4} - \frac{t^6}{6} + C \] ### Step 5: Substitute back Now we substitute back \( t = \cot x \): \[ -\frac{\cot^4 x}{4} - \frac{\cot^6 x}{6} + C \] ### Final Answer Thus, the final answer is: \[ -\frac{\cot^4 x}{4} - \frac{\cot^6 x}{6} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int cot^(3) x. cosec^(2) x dx

Evaluate: int cot^(3)x csc^(2)xdx

Evaluate: int cot^(n)x csc^(2)xdx,n!=-1

int cot^6x cosec^2xdx

int(cot^(2)x+cot^(4)x)dx=

Evaluate int "cosec"^(4)x dx

Evaluate : int ( cosec^2 ( 3 - x/4 ) dx = ------ + c

Evaluate: inte^x(cotx-cosec^2x)dx

int " cosec"^(4) 2x dx

Evaluate : int(tan x+cot x)dx