Home
Class 12
MATHS
Evaluate : int(x+2)/(sqrt(4x-x^(2)))dx...

Evaluate :
`int(x+2)/(sqrt(4x-x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x + 2}{\sqrt{4x - x^2}} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x + 2}{\sqrt{4x - x^2}} \, dx. \] ### Step 2: Identify the Denominator The expression under the square root can be rewritten as: \[ 4x - x^2 = - (x^2 - 4x) = - (x^2 - 4x + 4 - 4) = - ((x - 2)^2 - 4) = 4 - (x - 2)^2. \] Thus, we can rewrite the integral as: \[ I = \int \frac{x + 2}{\sqrt{4 - (x - 2)^2}} \, dx. \] ### Step 3: Use Substitution Let \( u = x - 2 \), then \( du = dx \) and \( x = u + 2 \). The integral becomes: \[ I = \int \frac{(u + 2) + 2}{\sqrt{4 - u^2}} \, du = \int \frac{u + 4}{\sqrt{4 - u^2}} \, du. \] ### Step 4: Split the Integral We can split the integral into two parts: \[ I = \int \frac{u}{\sqrt{4 - u^2}} \, du + \int \frac{4}{\sqrt{4 - u^2}} \, du. \] ### Step 5: Evaluate the First Integral For the first integral, we can use the substitution \( v = 4 - u^2 \), thus \( dv = -2u \, du \) or \( du = -\frac{dv}{2u} \). The integral simplifies to: \[ \int \frac{u}{\sqrt{4 - u^2}} \, du = -\frac{1}{2} \int \sqrt{v} \, dv = -\frac{1}{2} \cdot \frac{2}{3} v^{3/2} = -\frac{1}{3} (4 - u^2)^{3/2}. \] ### Step 6: Evaluate the Second Integral The second integral is a standard integral: \[ \int \frac{4}{\sqrt{4 - u^2}} \, du = 4 \sin^{-1} \left( \frac{u}{2} \right). \] ### Step 7: Combine the Results Combining both integrals, we have: \[ I = -\frac{1}{3} (4 - u^2)^{3/2} + 4 \sin^{-1} \left( \frac{u}{2} \right) + C. \] ### Step 8: Substitute Back Now, substituting back \( u = x - 2 \): \[ I = -\frac{1}{3} (4 - (x - 2)^2)^{3/2} + 4 \sin^{-1} \left( \frac{x - 2}{2} \right) + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{x + 2}{\sqrt{4x - x^2}} \, dx = -\frac{1}{3} (4 - (x - 2)^2)^{3/2} + 4 \sin^{-1} \left( \frac{x - 2}{2} \right) + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(x+2)/(sqrt(5-4x-x^(2)))dx .

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

int(x+3)/(sqrt(5-4x-x^(2)))dx

int(x+3)/(sqrt(5-4x-x^(2)))dx

Evaluate :int(dx)/(sqrt(5-4x-2x^(2)))

int(x+3)/(sqrt(5-4x-x^(2)))*dx

int(1)/(sqrt(5-4x-2x^(2)))dx

int(dx)/(sqrt(8-4x-2x^(2)))

int(dx)/(sqrt(3+4x-2x^(2)))

Evaluate: int(x^2)/(sqrt(4-x^2))\ dx