Home
Class 12
MATHS
Evaluate : int(dx)/(x(x^(7)+1))...

Evaluate :
`int(dx)/(x(x^(7)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{x(x^7 + 1)}, \] we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{x(x^7 + 1)}. \] ### Step 2: Multiply and Divide by \(x^6\) To facilitate the integration, we multiply and divide by \(x^6\): \[ I = \int \frac{x^6 \, dx}{x^7(x^7 + 1)} = \int \frac{x^6 \, dx}{x^7 + 1}. \] ### Step 3: Use Substitution Let \(t = x^7\). Then, the derivative \(dt = 7x^6 \, dx\) or \(dx = \frac{dt}{7x^6}\). Substituting these into the integral gives: \[ I = \int \frac{1}{7} \cdot \frac{dt}{t(t + 1)}. \] ### Step 4: Partial Fraction Decomposition Next, we can decompose \(\frac{1}{t(t + 1)}\) into partial fractions: \[ \frac{1}{t(t + 1)} = \frac{A}{t} + \frac{B}{t + 1}. \] Multiplying through by \(t(t + 1)\) gives: \[ 1 = A(t + 1) + Bt. \] Setting \(t = 0\) gives \(A = 1\). Setting \(t = -1\) gives \(B = -1\). Thus, we have: \[ \frac{1}{t(t + 1)} = \frac{1}{t} - \frac{1}{t + 1}. \] ### Step 5: Substitute Back into the Integral Now substituting back into the integral: \[ I = \frac{1}{7} \int \left( \frac{1}{t} - \frac{1}{t + 1} \right) dt. \] ### Step 6: Integrate Integrating term by term: \[ I = \frac{1}{7} \left( \ln |t| - \ln |t + 1| \right) + C. \] ### Step 7: Combine Logarithms Using the property of logarithms: \[ I = \frac{1}{7} \ln \left| \frac{t}{t + 1} \right| + C. \] ### Step 8: Substitute Back for \(t\) Recall that \(t = x^7\): \[ I = \frac{1}{7} \ln \left| \frac{x^7}{x^7 + 1} \right| + C. \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{dx}{x(x^7 + 1)} = \frac{1}{7} \ln \left| \frac{x^7}{x^7 + 1} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(dx)/(x(x^(n)+1))

Evaluate int(dx)/(x(x^(2)+1))

Evaluate int(dx)/(1-x-x^(2))

" Evaluate ":int(x)/((x^(2)+1))dx

Evaluate int(1)/(x(x^(7)+1))dx

Evaluate: int(x)/(x^(3)-1)dx

Evaluate int(dx)/((1+x-x^(2))) .

Evaluate: int(1)/(x+x)dx

Evaluate : (i) int(dx)/(1+sqrt(x)) (ii) int(x+sqrt(x+1))/(x+2)dx

Evaluate: int(1)/(x(x-1))dx