Home
Class 12
MATHS
Evaluate : int(dx)/((2-x)(x^(2)+3))...

Evaluate :
`int(dx)/((2-x)(x^(2)+3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{dx}{(2-x)(x^2+3)}, \] we will use the method of partial fractions. Let's go through the steps: ### Step 1: Set up the partial fraction decomposition We want to express the integrand as a sum of simpler fractions. We can write: \[ \frac{1}{(2-x)(x^2+3)} = \frac{A}{2-x} + \frac{Bx + C}{x^2 + 3}, \] where \(A\), \(B\), and \(C\) are constants we need to determine. ### Step 2: Combine the right-hand side Multiplying both sides by the common denominator \((2-x)(x^2+3)\) gives: \[ 1 = A(x^2 + 3) + (Bx + C)(2 - x). \] ### Step 3: Expand the right-hand side Expanding the right-hand side: \[ 1 = A(x^2 + 3) + (2B - C)x + (2C - B)x^2. \] Combining like terms, we have: \[ 1 = (A - B)x^2 + (2B - C)x + (3A + 2C). \] ### Step 4: Set up the system of equations Now we can equate the coefficients from both sides: 1. For \(x^2\): \(A - B = 0\) 2. For \(x\): \(2B - C = 0\) 3. For the constant term: \(3A + 2C = 1\) ### Step 5: Solve the system of equations From the first equation, we have: \[ A = B. \] Substituting \(A\) for \(B\) in the second equation: \[ 2A - C = 0 \implies C = 2A. \] Now substituting \(B = A\) and \(C = 2A\) into the third equation: \[ 3A + 2(2A) = 1 \implies 3A + 4A = 1 \implies 7A = 1 \implies A = \frac{1}{7}. \] Thus, \[ B = \frac{1}{7}, \quad C = 2A = \frac{2}{7}. \] ### Step 6: Write the partial fraction decomposition Now we can write the integrand as: \[ \frac{1}{(2-x)(x^2+3)} = \frac{1/7}{2-x} + \frac{(1/7)x + (2/7)}{x^2 + 3}. \] ### Step 7: Integrate each term Now we can integrate each term separately: \[ \int \left( \frac{1/7}{2-x} + \frac{(1/7)x + (2/7)}{x^2 + 3} \right) dx = \frac{1}{7} \int \frac{1}{2-x} dx + \frac{1}{7} \int \frac{x}{x^2 + 3} dx + \frac{2}{7} \int \frac{1}{x^2 + 3} dx. \] ### Step 8: Compute the integrals 1. The first integral: \[ \frac{1}{7} \int \frac{1}{2-x} dx = -\frac{1}{7} \ln |2-x|. \] 2. The second integral requires substitution. Let \(u = x^2 + 3\), then \(du = 2x \, dx\) or \(\frac{du}{2} = x \, dx\): \[ \frac{1}{7} \int \frac{x}{x^2 + 3} dx = \frac{1}{14} \ln |x^2 + 3|. \] 3. The third integral can be computed using the formula for the integral of \( \frac{1}{x^2 + a^2} \): \[ \frac{2}{7} \int \frac{1}{x^2 + 3} dx = \frac{2}{7} \cdot \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x}{\sqrt{3}}\right). \] ### Step 9: Combine the results Putting it all together, we have: \[ \int \frac{dx}{(2-x)(x^2+3)} = -\frac{1}{7} \ln |2-x| + \frac{1}{14} \ln |x^2 + 3| + \frac{2}{7\sqrt{3}} \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) + C. \] ### Final Answer Thus, the final result is: \[ \int \frac{dx}{(2-x)(x^2+3)} = -\frac{1}{7} \ln |2-x| + \frac{1}{14} \ln |x^2 + 3| + \frac{2}{7\sqrt{3}} \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

"Evaluate ": int(dx)/(x^(2)(x^(3)+1)^(2/3))

Evaluate : int(dx)/(x^(2)(x^(3)+1)^(2/3))

Evaluate : (i) int(2x)/((2x+1)^(2))dx (ii) int((2+3x))/((3-2x))dx

Evaluate: int(3x-1)/((x+2)^(2))dx

Evaluate: int(x)/((x+1)(x+2)(x+3))dx

Evaluate int(dx)/(2x^(1/2)+x^(3/2))

Evaluate: int(x)/(x^(2)+3x+2)dx

Evaluate : int(x+3)/((x+2)^(2)(x+1))dx

Evaluate: int(x)/(x^(4)+2x^(2)+3)dx

Evaluate int (x-2)/(3-x)dx