Home
Class 12
MATHS
Evaluate : int(x^(2)+x+2)/((x-2)(x-1))...

Evaluate :
`int(x^(2)+x+2)/((x-2)(x-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 + x + 2}{(x - 2)(x - 1)} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand First, we can perform polynomial long division since the degree of the numerator is equal to the degree of the denominator. We will divide \(x^2 + x + 2\) by \((x - 2)(x - 1)\). 1. **Divide** \(x^2\) by \(x^2\) to get \(1\). 2. **Multiply** \(1\) by \((x - 2)(x - 1)\) to get \(x^2 - 3x + 2\). 3. **Subtract** this from \(x^2 + x + 2\): \[ (x^2 + x + 2) - (x^2 - 3x + 2) = 4x. \] Thus, we can rewrite the integral as: \[ \int \left(1 + \frac{4x}{(x - 2)(x - 1)}\right) \, dx. \] ### Step 2: Separate the integral Now, we can separate the integral: \[ \int 1 \, dx + \int \frac{4x}{(x - 2)(x - 1)} \, dx. \] ### Step 3: Integrate the first part The first integral is straightforward: \[ \int 1 \, dx = x. \] ### Step 4: Integrate the second part using partial fractions Next, we need to integrate \(\int \frac{4x}{(x - 2)(x - 1)} \, dx\) using partial fractions. We can express \(\frac{4x}{(x - 2)(x - 1)}\) as: \[ \frac{A}{x - 2} + \frac{B}{x - 1}. \] Multiplying through by the denominator \((x - 2)(x - 1)\), we get: \[ 4x = A(x - 1) + B(x - 2). \] Expanding the right side: \[ 4x = Ax - A + Bx - 2B = (A + B)x - (A + 2B). \] ### Step 5: Set up equations Now, we can set up the equations by equating coefficients: 1. \(A + B = 4\) (coefficient of \(x\)) 2. \(-A - 2B = 0\) (constant term) From the second equation, we can express \(A\): \[ A + 2B = 0 \implies A = -2B. \] Substituting \(A = -2B\) into the first equation: \[ -2B + B = 4 \implies -B = 4 \implies B = -4. \] Then substituting \(B = -4\) back to find \(A\): \[ A = -2(-4) = 8. \] ### Step 6: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{4x}{(x - 2)(x - 1)} \, dx = \int \left(\frac{8}{x - 2} - \frac{4}{x - 1}\right) \, dx. \] ### Step 7: Integrate the partial fractions Now we can integrate each term: \[ \int \frac{8}{x - 2} \, dx - \int \frac{4}{x - 1} \, dx = 8 \ln |x - 2| - 4 \ln |x - 1|. \] ### Step 8: Combine results Combining all parts together, we have: \[ \int \frac{x^2 + x + 2}{(x - 2)(x - 1)} \, dx = x + 8 \ln |x - 2| - 4 \ln |x - 1| + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int \frac{x^2 + x + 2}{(x - 2)(x - 1)} \, dx = x + 8 \ln |x - 2| - 4 \ln |x - 1| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : "int((x^(2)-x+1))/((x^(2)+1))dx

Evaluate : int(x^(2)-x+2)/(x^(2)+1)dx

Evaluate : int(x^(2))/(x(1+x^(2)))dx

Evaluate :int(1-x^(2))/(x(1-2x))dx

Evaluate : int(x^(2)+3x-1)/(2x)dx

Evaluate int x(x-1)^(2)dx

Evaluate: int(x^2+x+1)/((x+2)(x^2+1)) dx

Evaluate: int(x^(2)+x+1)/(x^(2)-x)dx

Evaluate : int(x^(2)-1)/((x+1)(x+2))dx

Evaluate: int(x^(2))/((x-1)sqrt(x+2))dx