Home
Class 12
MATHS
Evaluate : int (dx)/((2x+1)(x^(2)+4))...

Evaluate :
`int (dx)/((2x+1)(x^(2)+4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{(2x+1)(x^2+4)}, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{1}{(2x+1)(x^2+4)} = \frac{A}{2x+1} + \frac{Bx+C}{x^2+4}, \] where \(A\), \(B\), and \(C\) are constants that we need to determine. ### Step 2: Combine the fractions Multiplying both sides by the denominator \((2x+1)(x^2+4)\) gives: \[ 1 = A(x^2 + 4) + (Bx + C)(2x + 1). \] Expanding the right-hand side: \[ 1 = Ax^2 + 4A + (2Bx^2 + Bx + 2Cx + C). \] Combining like terms, we have: \[ 1 = (A + 2B)x^2 + (B + 2C)x + (4A + C). \] ### Step 3: Set up a system of equations Now, we can equate the coefficients from both sides: 1. For \(x^2\): \(A + 2B = 0\) 2. For \(x\): \(B + 2C = 0\) 3. Constant term: \(4A + C = 1\) ### Step 4: Solve the system of equations From the first equation, we can express \(A\) in terms of \(B\): \[ A = -2B. \] Substituting \(A\) into the third equation: \[ 4(-2B) + C = 1 \implies -8B + C = 1 \implies C = 1 + 8B. \] Now substituting \(C\) into the second equation: \[ B + 2(1 + 8B) = 0 \implies B + 2 + 16B = 0 \implies 17B + 2 = 0 \implies B = -\frac{2}{17}. \] Now substituting \(B\) back to find \(A\) and \(C\): \[ A = -2\left(-\frac{2}{17}\right) = \frac{4}{17}, \] \[ C = 1 + 8\left(-\frac{2}{17}\right) = 1 - \frac{16}{17} = \frac{1}{17}. \] ### Step 5: Write the partial fraction decomposition Now we can write: \[ \frac{1}{(2x+1)(x^2+4)} = \frac{4/17}{2x+1} + \frac{-2/17 x + 1/17}{x^2+4}. \] ### Step 6: Integrate each term Now we can integrate term by term: \[ I = \int \left(\frac{4/17}{2x+1} + \frac{-2/17 x + 1/17}{x^2+4}\right) dx. \] This gives us: \[ I = \frac{4}{17} \int \frac{1}{2x+1} dx - \frac{2}{17} \int \frac{x}{x^2+4} dx + \frac{1}{17} \int \frac{1}{x^2+4} dx. \] ### Step 7: Solve each integral 1. The first integral: \[ \int \frac{1}{2x+1} dx = \frac{1}{2} \ln |2x+1| + C. \] 2. The second integral can be solved using substitution \(u = x^2 + 4\): \[ \int \frac{x}{x^2+4} dx = \frac{1}{2} \ln |x^2 + 4| + C. \] 3. The third integral: \[ \int \frac{1}{x^2+4} dx = \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) + C. \] ### Step 8: Combine the results Putting it all together, we have: \[ I = \frac{4}{17} \cdot \frac{1}{2} \ln |2x+1| - \frac{2}{17} \cdot \frac{1}{2} \ln |x^2 + 4| + \frac{1}{17} \cdot \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) + C. \] ### Final Result Thus, the evaluated integral is: \[ I = \frac{2}{17} \ln |2x+1| - \frac{1}{17} \ln |x^2 + 4| + \frac{1}{34} \tan^{-1}\left(\frac{x}{2}\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x)/((x-1)(x^(2)+4))dx

Evaluate: int(x^(4)dx)/((x-1)(x^(2)+1))

" 4.Evaluate: "int e^(x)((x-1)/(x^(2)))dx

Evaluate: int(5x)/((x+1)(x^2-4))\ dx

Evaluate: int(1)/((x^(2)+1)(x^(2)+4))dx

Evaluate: int(1)/((x-1)sqrt(x^(2)+4))dx

Evaluate : (i) int(dx)/((1-4x^(2))) (ii) int(dx)/((32-2x^(2))) (iii) int(x^(2))/((1-x^(6)))dx

Evaluate : int (1)/(4-x^(2)) dx

Evaluate: int(2x+1)/((x+1)(x-2))dx

Evaluate: int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))