Home
Class 12
MATHS
Evaluate : int(x^(2)-1)/(x^(4)+x^(2)+1...

Evaluate :
`int(x^(2)-1)/(x^(4)+x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 - 1}{x^4 + x^2 + 1} \, dx, \] we will follow a systematic approach. ### Step 1: Simplify the Integral First, we can rewrite the integral by factoring out \(x^2\) from both the numerator and the denominator: \[ \int \frac{x^2 - 1}{x^4 + x^2 + 1} \, dx = \int \frac{x^2(1 - \frac{1}{x^2})}{x^2(x^2 + 1 + \frac{1}{x^2})} \, dx. \] This simplifies to: \[ \int \frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \, dx. \] ### Step 2: Rewrite the Denominator Next, we can rewrite the denominator \(x^4 + x^2 + 1\) as follows: \[ x^4 + x^2 + 1 = \left(x^2 + \frac{1}{2}\right)^2 + \frac{3}{4}. \] This allows us to express the integral in a more manageable form. ### Step 3: Substitute Now, we can use the substitution \(t = x + \frac{1}{x}\). Then, we differentiate: \[ dt = \left(1 - \frac{1}{x^2}\right) dx. \] Thus, we can rewrite the integral in terms of \(t\): \[ \int \frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \, dx = \int \frac{dt}{\text{(expression in terms of t)}}. \] ### Step 4: Evaluate the Integral The integral can be evaluated using the formula for the integral of the form: \[ \int \frac{1}{t^2 - a^2} \, dt = \frac{1}{2a} \ln \left| \frac{t - a}{t + a} \right| + C. \] In our case, \(a = 1\). So, we have: \[ \int \frac{1}{t^2 - 1} \, dt = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| + C. \] ### Step 5: Back Substitute Now we back substitute \(t = x + \frac{1}{x}\): \[ \int \frac{x^2 - 1}{x^4 + x^2 + 1} \, dx = \frac{1}{2} \ln \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| + C. \] ### Final Result Thus, the final result for the integral is: \[ \frac{1}{2} \ln \left| \frac{x^2 - x + 1}{x^2 + x + 1} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(2)-1)/(x^(4)-7x^(2)+1) dx

Evaluate: int(x^(2)-3x+1)/(x^(4)+x^(2)+1)dx

Evaluate: int(x^(2)-1)/(x^(4)+1)dx

Evaluate: int(x^(2)-1)/(x^(2)+4)dx

Evaluate int(x^(2)-1)/(1+x^(4))*dx

Evaluate: int(x^(2)+1)/(x^(4)+1)dx

Evaluate: int((x-1)^(2))/(x^(4)+x^(2)+1)dx

Evaluate :int(1+x^(2))/(1+x^(4))dx

Evaluate : "int((x^(2)-x+1))/((x^(2)+1))dx

Evaluate: "int(x^(4)-1)/(x^(2)+5)dx