Home
Class 12
MATHS
Evaluate : int x^(5)sin x^(3)dx...

Evaluate :
`int x^(5)sin x^(3)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int x^5 \sin(x^3) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( x^5 \) as \( x^2 \cdot x^3 \): \[ I = \int x^2 \cdot x^3 \sin(x^3) \, dx \] **Hint:** Look for a substitution that simplifies the integral, especially when you see a function and its derivative. ### Step 2: Substitution Let \( t = x^3 \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Now, we can express \( x^2 \, dx \) as: \[ x^2 \, dx = \frac{dt}{3} \] **Hint:** When substituting, always remember to change the variable in both the differential and the integrand. ### Step 3: Change the Integral Substituting \( t \) into the integral, we have: \[ I = \int x^2 \sin(t) \cdot \frac{dt}{3} = \frac{1}{3} \int \sin(t) \, dt \] **Hint:** Simplifying the integral can make it easier to integrate. ### Step 4: Integrate Now we can integrate \( \sin(t) \): \[ I = \frac{1}{3} \left( -\cos(t) \right) + C = -\frac{1}{3} \cos(t) + C \] **Hint:** Remember to include the constant of integration after performing the integral. ### Step 5: Back Substitute Now, we substitute back \( t = x^3 \): \[ I = -\frac{1}{3} \cos(x^3) + C \] **Hint:** Always revert to the original variable to express the final answer. ### Final Answer Thus, the evaluated integral is: \[ \int x^5 \sin(x^3) \, dx = -\frac{1}{3} \cos(x^3) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int x^(3)cos x^(4)dx(ii)int x^(3)sin x^(4)dx

Evaluate : int x sin x^(2)dx

Evaluate: int(cos^(5)x)/(sin x)dx

Evaluate: int(cos^(5)x)/(sin x)dx

Evaluate :int e^(2x)*sin(3x+1)dx

Evaluate: int(1)/(sin x cos^(3)x)dx

Evaluate: int e^(2x)sin(3x+1)dx

Evaluate: int(cos^(3)x)/(sin x)dx

Evaluate: int(sin x+e^(x)+3)dx

Evaluate: int(cos x)/(2+3sin x)dx