Home
Class 12
MATHS
Evaluate : int sin^(-1)((6x)/(1+9x^(2)...

Evaluate :
`int sin^(-1)((6x)/(1+9x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sin^{-1}\left(\frac{6x}{1 + 9x^2}\right) dx \), we will follow a systematic approach. ### Step 1: Simplify the Argument of the Inverse Sine Function We start by rewriting the argument of the inverse sine function: \[ \frac{6x}{1 + 9x^2} = \frac{2 \cdot 3x}{1 + (3x)^2} \] This suggests a trigonometric substitution. Let \( 3x = \tan \theta \), then \( x = \frac{1}{3} \tan \theta \). ### Step 2: Change of Variables Differentiating \( x = \frac{1}{3} \tan \theta \) gives: \[ dx = \frac{1}{3} \sec^2 \theta \, d\theta \] Now substitute \( 3x = \tan \theta \) into the integral: \[ I = \int \sin^{-1}\left(\frac{2 \tan \theta}{1 + \tan^2 \theta}\right) \cdot \frac{1}{3} \sec^2 \theta \, d\theta \] ### Step 3: Simplifying the Inverse Sine Expression Using the identity \( \frac{2 \tan \theta}{1 + \tan^2 \theta} = \sin(2\theta) \), we can simplify: \[ \sin^{-1}\left(\frac{2 \tan \theta}{1 + \tan^2 \theta}\right) = \sin^{-1}(\sin(2\theta)) = 2\theta \] Thus, we can rewrite the integral: \[ I = \int 2\theta \cdot \frac{1}{3} \sec^2 \theta \, d\theta = \frac{2}{3} \int \theta \sec^2 \theta \, d\theta \] ### Step 4: Integration by Parts Now we apply integration by parts. Let: - \( u = \theta \) (thus \( du = d\theta \)) - \( dv = \sec^2 \theta \, d\theta \) (thus \( v = \tan \theta \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \theta \sec^2 \theta \, d\theta = \theta \tan \theta - \int \tan \theta \, d\theta \] The integral of \( \tan \theta \) is \( -\log|\cos \theta| \), so: \[ \int \theta \sec^2 \theta \, d\theta = \theta \tan \theta + \log|\cos \theta| \] ### Step 5: Substitute Back Substituting back into our expression for \( I \): \[ I = \frac{2}{3} \left( \theta \tan \theta + \log|\cos \theta| \right) + C \] Now substituting \( \theta = \tan^{-1}(3x) \) and \( \tan \theta = 3x \): \[ I = \frac{2}{3} \left( \tan^{-1}(3x) \cdot 3x + \log|\cos(\tan^{-1}(3x))| \right) + C \] ### Step 6: Simplifying the Logarithmic Term Using the identity \( \cos(\tan^{-1}(3x)) = \frac{1}{\sqrt{1 + (3x)^2}} = \frac{1}{\sqrt{1 + 9x^2}} \): \[ \log|\cos(\tan^{-1}(3x))| = \log\left(\frac{1}{\sqrt{1 + 9x^2}}\right) = -\frac{1}{2} \log(1 + 9x^2) \] ### Final Expression Thus, the final result for the integral is: \[ I = \frac{2}{3} \left( 3x \tan^{-1}(3x) - \frac{1}{2} \log(1 + 9x^2) \right) + C \] This simplifies to: \[ I = 2x \tan^{-1}(3x) - \frac{1}{3} \log(1 + 9x^2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int sin^(-1)((2x)/(1+x^(2)))dx

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: int(sin^(-1)x)^(2)dx

Evaluate: int(sin^-1x)^2dx

Evaluate : int sin^(-1) x/ sqrt( 1 - x^2 ) dx

Evaluate: int(sin^(-1)x)/(x^2)\ dx

int_(1)^(2)(3x)/(9x^(2)-1)dx

Evaluate : (i) inte^(x)((1)/(x)-(1)/(x^(2)))dx (ii) inte^(x)((1)/(x^(2))-(2)/(x^(3)))dx (iii) inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}dx (iv) inte^(x)(tanx+logsecx)dx

Evaluate: (i) int e^(x)((1)/(x)-(1)/(x^(2)))dx (ii) int e^(x)(sin x+cos x)dx

Evaluate: int sin2x tan^(-1)(sin x)dx