Home
Class 12
MATHS
Evaluate : int x^(3)tan^(-1)x dx...

Evaluate :
`int x^(3)tan^(-1)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x^3 \tan^{-1}(x) \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(x) \) (first function) - \( dv = x^3 \, dx \) (second function) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+x^2} \, dx \] - Integrate \( dv \): \[ v = \int x^3 \, dx = \frac{x^4}{4} \] ### Step 3: Apply the integration by parts formula Now we apply the integration by parts formula: \[ \int x^3 \tan^{-1}(x) \, dx = uv - \int v \, du \] Substituting the values we found: \[ = \tan^{-1}(x) \cdot \frac{x^4}{4} - \int \frac{x^4}{4} \cdot \frac{1}{1+x^2} \, dx \] This simplifies to: \[ = \frac{x^4}{4} \tan^{-1}(x) - \frac{1}{4} \int \frac{x^4}{1+x^2} \, dx \] ### Step 4: Simplify the integral Now we simplify the integral \( \int \frac{x^4}{1+x^2} \, dx \): \[ \frac{x^4}{1+x^2} = \frac{x^4 - 1 + 1}{1+x^2} = \frac{(x^2 - 1)(x^2 + 1)}{1+x^2} + 1 \] This can be rewritten as: \[ = x^2 - 1 + \frac{1}{1+x^2} \] Thus, we have: \[ \int \frac{x^4}{1+x^2} \, dx = \int (x^2 - 1) \, dx + \int \frac{1}{1+x^2} \, dx \] ### Step 5: Evaluate the integrals Now we evaluate the integrals: 1. \( \int (x^2 - 1) \, dx = \frac{x^3}{3} - x \) 2. \( \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \) Putting it all together: \[ \int \frac{x^4}{1+x^2} \, dx = \left( \frac{x^3}{3} - x + \tan^{-1}(x) \right) \] ### Step 6: Substitute back into the equation Substituting this back into our equation: \[ \int x^3 \tan^{-1}(x) \, dx = \frac{x^4}{4} \tan^{-1}(x) - \frac{1}{4} \left( \frac{x^3}{3} - x + \tan^{-1}(x) \right) \] ### Step 7: Simplify the expression This simplifies to: \[ = \frac{x^4}{4} \tan^{-1}(x) - \frac{x^3}{12} + \frac{x}{4} - \frac{1}{4} \tan^{-1}(x) + C \] ### Final Result Combining the terms gives us the final result: \[ \int x^3 \tan^{-1}(x) \, dx = \left( \frac{x^4}{4} - \frac{1}{4} \right) \tan^{-1}(x) - \frac{x^3}{12} + \frac{x}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int ((e^( tan^(-1)x) )/ (1+x^2)) dx

Evaluate: int tan^(-1)sqrt(x)dx

Evaluate : int (tan^(-1)x)^(4)/(1+x^2) dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

Evaluate: int(x^(2)tan^(-1)x^(3))/(1+x^(6))dx

Evaluate: int(x^(2)"tan"^(-1)x^(3))/(1+x^(6))dx

Evaluate: int (x^2tan^(-1)x^3)/(1+x^6) dx

Evaluate int (tan^(-1)x dx)/((1+x^(2))^((3)/(2))

Evaluate: int tan^(-1)(sqrt(x))dx