Home
Class 12
MATHS
Evaluate : int[(1)/(logx)-(1)/((log x)...

Evaluate :
`int[(1)/(logx)-(1)/((log x)^(2))]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \left( \frac{1}{\log x} - \frac{1}{(\log x)^2} \right) dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{x} \implies dx = x \, dt. \] Since \( x = e^t \), we can substitute \( dx \) as follows: \[ dx = e^t \, dt. \] ### Step 2: Rewrite the Integral Now, substituting \( t \) and \( dx \) into the integral, we have: \[ \int \left( \frac{1}{t} - \frac{1}{t^2} \right) e^t \, dt. \] ### Step 3: Distribute \( e^t \) Distributing \( e^t \) gives us: \[ \int \left( \frac{e^t}{t} - \frac{e^t}{t^2} \right) dt. \] ### Step 4: Split the Integral We can split this into two separate integrals: \[ \int \frac{e^t}{t} \, dt - \int \frac{e^t}{t^2} \, dt. \] ### Step 5: Evaluate the Integrals The first integral, \( \int \frac{e^t}{t} \, dt \), does not have a simple elementary form, but we can denote it as \( \text{Ei}(t) \) (the Exponential Integral function). The second integral can be evaluated using integration by parts. Let: - \( u = \frac{1}{t^2} \) and \( dv = e^t \, dt \). - Then, \( du = -\frac{2}{t^3} \, dt \) and \( v = e^t \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int \frac{e^t}{t^2} \, dt = \frac{e^t}{t^2} - \int e^t \left(-\frac{2}{t^3}\right) dt. \] This integral can be complex, but for simplicity, we can denote it as \( I(t) \). ### Step 6: Combine Results Thus, the integral becomes: \[ \text{Ei}(t) - \left( \frac{e^t}{t^2} + I(t) \right) + C, \] where \( C \) is the constant of integration. ### Step 7: Substitute Back Finally, substitute \( t = \log x \) back into the expression: \[ \text{Ei}(\log x) - \left( \frac{x}{(\log x)^2} + I(\log x) \right) + C. \] ### Final Answer The final answer is: \[ \int \left( \frac{1}{\log x} - \frac{1}{(\log x)^2} \right) dx = \text{Ei}(\log x) - \frac{x}{(\log x)^2} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate intlogxdx

Evaluate: intxlogxdx

Evaluate: intxcosaxcosbxdx

Find

Find

Find

Find

Find