Home
Class 12
MATHS
Evaluate : int {log(logx)+(1)/((logx)...

Evaluate :
`int {log(logx)+(1)/((logx)^(2))}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx, \] we will use integration by parts. ### Step 1: Set up integration by parts We can write the integral in the form suitable for integration by parts. Let: - \( u = \log(\log x) \) (first function) - \( dv = dx \) (second function) Then, we differentiate and integrate to find \( du \) and \( v \): - \( du = \frac{1}{\log x} \cdot \frac{1}{x} \, dx = \frac{1}{x \log x} \, dx \) - \( v = x \) ### Step 2: Apply integration by parts Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ I = x \log(\log x) - \int x \cdot \frac{1}{x \log x} \, dx \] This simplifies to: \[ I = x \log(\log x) - \int \frac{1}{\log x} \, dx \] ### Step 3: Evaluate the remaining integral Now we need to evaluate \( \int \frac{1}{\log x} \, dx \). We can again use integration by parts for this integral. Let: - \( u = \frac{1}{\log x} \) (first function) - \( dv = dx \) (second function) Then we differentiate and integrate to find \( du \) and \( v \): - \( du = -\frac{1}{(\log x)^2} \cdot \frac{1}{x} \, dx = -\frac{1}{x (\log x)^2} \, dx \) - \( v = x \) Applying integration by parts again: \[ \int \frac{1}{\log x} \, dx = x \cdot \frac{1}{\log x} - \int x \cdot \left(-\frac{1}{x (\log x)^2}\right) \, dx \] This simplifies to: \[ \int \frac{1}{\log x} \, dx = \frac{x}{\log x} + \int \frac{1}{(\log x)^2} \, dx \] ### Step 4: Substitute back Now substituting back into our expression for \( I \): \[ I = x \log(\log x) - \left( \frac{x}{\log x} + \int \frac{1}{(\log x)^2} \, dx \right) \] This gives: \[ I = x \log(\log x) - \frac{x}{\log x} - \int \frac{1}{(\log x)^2} \, dx \] ### Step 5: Final result Thus, the final expression for the integral is: \[ I = x \log(\log x) - \frac{x}{\log x} - \int \frac{1}{(\log x)^2} \, dx + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

int(log(logx))/(x.logx)dx=

int[(1)/(logx)-(1)/((logx)^(2))]dx=

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(log(x//e))/((logx)^(2))dx=

int(logx)^(2)dx=?

Evaluate : int(logx)^(2)dx .