Home
Class 12
MATHS
Evaluate the following definite integral...

Evaluate the following definite integrals:
`int_(0)^(1)x sqrt((1-x^(2))/(1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \[ I = \int_{0}^{1} x \sqrt{\frac{1 - x^2}{1 + x^2}} \, dx, \] we will use a substitution method. Let's proceed step by step. ### Step 1: Substitution Let \( x^2 = t \). Then, we have: \[ dx = \frac{1}{2\sqrt{t}} \, dt. \] Now we need to change the limits of integration. When \( x = 0 \), \( t = 0 \) and when \( x = 1 \), \( t = 1 \). Thus, the integral becomes: \[ I = \int_{0}^{1} \sqrt{t} \sqrt{\frac{1 - t}{1 + t}} \cdot \frac{1}{2\sqrt{t}} \, dt = \frac{1}{2} \int_{0}^{1} \sqrt{\frac{1 - t}{1 + t}} \, dt. \] ### Step 2: Simplifying the Integral Now we can rewrite the integral: \[ I = \frac{1}{2} \int_{0}^{1} \sqrt{\frac{1 - t}{1 + t}} \, dt. \] ### Step 3: Further Simplification Next, we can multiply and divide the integrand by \(\sqrt{1 - t}\): \[ I = \frac{1}{2} \int_{0}^{1} \frac{1 - t}{\sqrt{1 - t^2}} \, dt. \] This can be split into two integrals: \[ I = \frac{1}{2} \left( \int_{0}^{1} \frac{1}{\sqrt{1 - t^2}} \, dt - \int_{0}^{1} \frac{t}{\sqrt{1 - t^2}} \, dt \right). \] ### Step 4: Evaluating the Integrals 1. The first integral: \[ \int_{0}^{1} \frac{1}{\sqrt{1 - t^2}} \, dt = \frac{\pi}{2}. \] 2. The second integral can be evaluated using the substitution \( t = \sin(\theta) \), \( dt = \cos(\theta) d\theta \): \[ \int_{0}^{1} \frac{t}{\sqrt{1 - t^2}} \, dt = \int_{0}^{\frac{\pi}{2}} \sin(\theta) d\theta = -\cos(\theta) \bigg|_{0}^{\frac{\pi}{2}} = 1. \] ### Step 5: Combine Results Putting it all together, we have: \[ I = \frac{1}{2} \left( \frac{\pi}{2} - 1 \right). \] Thus, the final result is: \[ I = \frac{\pi}{4} - \frac{1}{2}. \] ### Final Answer \[ \int_{0}^{1} x \sqrt{\frac{1 - x^2}{1 + x^2}} \, dx = \frac{\pi}{4} - \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following definite integral: int_(0)^(1)sqrt(x(1-x))dx

Evaluate the following definite integral: int_(0)^(1/2)(1)/(sqrt(1-x^(2)))dx

Evaluate the following definite integral: int_(0)^(4)(1)/(sqrt(4x-x^(2)))dx

Evaluate the following definite integrals: int_(0)^(1)x log(1+x/2)dx

Evaluate the following definite integral: int_(0)^(2)(1)/(sqrt(3+2x-x^(2)))dx

Evaluate the following definite integral: int_(0)^(1)(x)/(x+1)dx

Evaluate the following definite integral: int_(0)^(1)(1)/(2x^(2)+x+1)dx

Evaluate the following definite integral: int_(0)^(1)(1)/(1+x^(2))dx

Evaluate the following definite integral: int_(0)^(1)(1-x)/(1+x)dx

Evaluate the following definite integral: int_(0)^(2)(1)/(4+x-x^(2))dx