Home
Class 12
MATHS
Evaluate the following definite integral...

Evaluate the following definite integrals:
`int_(0)^(pi//2)(sin 2x)/(sin^(4)x+cos^(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{\sin^4 x + \cos^4 x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator We start by simplifying the expression \(\sin^4 x + \cos^4 x\). We can use the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab. \] Let \(a = \sin^2 x\) and \(b = \cos^2 x\). Then, \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x. \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x. \] Using the identity \(\sin 2x = 2\sin x \cos x\), we can express \(\sin^2 x \cos^2 x\) as: \[ \sin^2 x \cos^2 x = \frac{\sin^2 2x}{4}. \] Thus, we can rewrite the denominator: \[ \sin^4 x + \cos^4 x = 1 - \frac{1}{2}\sin^2 2x. \] ### Step 2: Substitute the Denominator into the Integral Now substituting this back into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{1 - \frac{1}{2}\sin^2 2x} \, dx. \] ### Step 3: Factor Out Constants We can factor out \(\frac{1}{2}\) from the denominator: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{2 - \sin^2 2x} \, dx. \] ### Step 4: Use Substitution Let \(t = \cos 2x\). Then, we have: \[ dt = -2\sin 2x \, dx \quad \Rightarrow \quad \sin 2x \, dx = -\frac{dt}{2}. \] The limits change as follows: when \(x = 0\), \(t = \cos(0) = 1\) and when \(x = \frac{\pi}{2}\), \(t = \cos(\pi) = -1\). Thus, we can rewrite the integral: \[ I = 2 \int_{1}^{-1} \frac{-\frac{dt}{2}}{2 - (1 - t^2)} = 2 \int_{-1}^{1} \frac{dt}{1 + t^2}. \] ### Step 5: Evaluate the Integral The integral \(\int \frac{dt}{1 + t^2}\) is known to be \(\tan^{-1}(t)\). Thus, we have: \[ I = 2 \left[ \tan^{-1}(t) \right]_{-1}^{1} = 2 \left( \tan^{-1}(1) - \tan^{-1}(-1) \right). \] Since \(\tan^{-1}(1) = \frac{\pi}{4}\) and \(\tan^{-1}(-1) = -\frac{\pi}{4}\), we find: \[ I = 2 \left( \frac{\pi}{4} - (-\frac{\pi}{4}) \right) = 2 \left( \frac{\pi}{4} + \frac{\pi}{4} \right) = 2 \cdot \frac{\pi}{2} = \pi. \] ### Final Answer Thus, the value of the definite integral is: \[ \boxed{\pi}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following definite integrals: int_0^(pi//2)xsinx sin2x dx

Evaluate the following definite integral: int_(0)^( pi/2)(sin x+cos x)dx

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

int_(0)^( pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

Evaluate the following definite integrals: int_0^(pi//4)(sinx+cosx)/(5+4sin2x)dx

Evaluate the following definite integrals: int_0^(pi//4)(sqrt(1-sin2x))/(sinx+cosx)dx

int_(0)^( pi/2)(sin2x)/(sin^(4)x+cos^(4)x)backslash dx

Evaluate the following definite integral: int_(-pi/2)^(0)|sin+cos x|dx

Evaluate the following definite integral: int_(0)^( pi)((sin^(2)x)/(2)-(cos^(2)x)/(2))dx

CBSE COMPLEMENTARY MATERIAL-INTEGRALS-FOUR MARK QUESTIONS
  1. Evaluate the following definite integrals: int(0)^(1)x sqrt((1-x^(2)...

    Text Solution

    |

  2. int(0)^(1//sqrt(2))(sin^(-1)x)/((1-x^(2))^(3//2))dx=?

    Text Solution

    |

  3. Evaluate the following definite integrals: int(0)^(pi//2)(sin 2x)/(s...

    Text Solution

    |

  4. underset(0)overset(1)int sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |

  5. Evaluate the following definite integrals: int(0)^(pi//2)(1-sinx)/(x...

    Text Solution

    |

  6. Evaluate the following definite integrals: int(0)^(1)x log(1+x/2)dx

    Text Solution

    |

  7. Evaluate the following definite integrals: int(-1)^(1//2)|xcos pi x...

    Text Solution

    |

  8. int(-pi)^pi(cosa x-sinb x)^2dx

    Text Solution

    |

  9. Evaluate : int(2)^(5)[|x-2|+|x-3|+|x-4|]dx

    Text Solution

    |

  10. Evaluate : int(0)^(pi) (x sin x )/(1 + sin x ) dx

    Text Solution

    |

  11. int- 1^1 e^(tan-1) x [(1+x+x^2)/(1+x^2)]dx

    Text Solution

    |

  12. Evaluate: int0^pi(xsinx)/(1+cos^2x)\ dx

    Text Solution

    |

  13. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  14. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  15. Evaluate int(0)^(pi)(x)/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx.

    Text Solution

    |

  16. Evaluate of each of the following integral: int(pi//6)^(pi//3)1/(1+sqr...

    Text Solution

    |

  17. Evaluate the following integral: int(-pi//2)^(pi//2)(sin|x|+"cos"|x|)d...

    Text Solution

    |

  18. Evaluate int(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx.

    Text Solution

    |

  19. int(0)^(pi)(x tanx)/(secx+cosx)dx is

    Text Solution

    |

  20. Evaluate the following integral: int(-a)^asqrt((a-x)/(a+x))dx

    Text Solution

    |