Home
Class 12
MATHS
Evaluate the following definite integral...

Evaluate the following definite integrals:
`int_(0)^(1)x log(1+x/2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \( I = \int_{0}^{1} x \log\left(1 + \frac{x}{2}\right) \, dx \), we can follow these steps: ### Step 1: Simplify the logarithm Using the property of logarithms, we can rewrite the integral as: \[ I = \int_{0}^{1} x \left( \log(2 + x) - \log(2) \right) \, dx \] This gives us two separate integrals: \[ I = \int_{0}^{1} x \log(2 + x) \, dx - \log(2) \int_{0}^{1} x \, dx \] ### Step 2: Evaluate the second integral The second integral is straightforward: \[ \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1}{2} \] Thus, we have: \[ I = \int_{0}^{1} x \log(2 + x) \, dx - \frac{1}{2} \log(2) \] ### Step 3: Evaluate the first integral using substitution Now we focus on the integral \( \int_{0}^{1} x \log(2 + x) \, dx \). We can use the substitution \( u = 2 + x \), which implies \( du = dx \) and when \( x = 0 \), \( u = 2 \) and when \( x = 1 \), \( u = 3 \). Also, \( x = u - 2 \). Therefore, the integral becomes: \[ \int_{2}^{3} (u - 2) \log(u) \, du \] This can be split into two integrals: \[ \int_{2}^{3} u \log(u) \, du - 2 \int_{2}^{3} \log(u) \, du \] ### Step 4: Evaluate \( \int_{2}^{3} u \log(u) \, du \) using integration by parts Let \( v = \log(u) \) and \( dw = u \, du \). Then, \( dv = \frac{1}{u} \, du \) and \( w = \frac{u^2}{2} \). Using integration by parts: \[ \int u \log(u) \, du = \frac{u^2}{2} \log(u) - \int \frac{u^2}{2} \cdot \frac{1}{u} \, du = \frac{u^2}{2} \log(u) - \frac{1}{2} \int u \, du \] Calculating the integral: \[ \int u \, du = \frac{u^2}{2} \] Thus, \[ \int u \log(u) \, du = \frac{u^2}{2} \log(u) - \frac{u^2}{4} \] Now we evaluate this from \( 2 \) to \( 3 \): \[ \left[ \frac{u^2}{2} \log(u) - \frac{u^2}{4} \right]_{2}^{3} \] Calculating at the bounds: - For \( u = 3 \): \[ \frac{3^2}{2} \log(3) - \frac{3^2}{4} = \frac{9}{2} \log(3) - \frac{9}{4} \] - For \( u = 2 \): \[ \frac{2^2}{2} \log(2) - \frac{2^2}{4} = 2 \log(2) - 1 \] Thus, \[ \int_{2}^{3} u \log(u) \, du = \left( \frac{9}{2} \log(3) - \frac{9}{4} \right) - \left( 2 \log(2) - 1 \right) \] ### Step 5: Combine results Now substituting back into our expression for \( I \): \[ I = \left( \frac{9}{2} \log(3) - \frac{9}{4} - 2 \log(2) + 1 \right) - \frac{1}{2} \log(2) \] Combining the logarithmic terms: \[ I = \frac{9}{2} \log(3) - \frac{9}{4} - \frac{5}{2} \log(2) + 1 \] ### Final Result Thus, the evaluated integral is: \[ I = \frac{9}{2} \log(3) - \frac{5}{2} \log(2) + \frac{7}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following definite integral: int_(0)^(1)(x)/(x+1)dx

Evaluate the following definite integrals: int_(0)^(1)x sqrt((1-x^(2))/(1+x^(2)))dx

Evaluate the following definite integral: int_(1)^(e)(log x)/(x)dx

Evaluate the following definite integral: int_(0)^(1)(1-x)/(1+x)dx

Evaluate the following definite integrals: int_(0)^(oo)e^(-x)dx

Evaluate the following definite integral: int_(0)^(1)(1)/(2x^(2)+x+1)dx

Evaluate the following definite integral: int_(0)^(1)(1)/(1+x^(2))dx

Evaluate the following definite integral: int_(0)^(1)sqrt(x(1-x))dx

Evaluate the following definite integral: int_(0)^(2)(1)/(4+x-x^(2))dx

Evaluate the following definite integral: int_(-1)^(-1)(1)/(1+x^(2))dx