Home
Class 12
MATHS
Evaluate : int(0)^(2)[x^(2)]dx...

Evaluate :
`int_(0)^(2)[x^(2)]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{2} \lfloor x^2 \rfloor \, dx \), where \( \lfloor x^2 \rfloor \) is the greatest integer function, we will first determine the intervals where \( \lfloor x^2 \rfloor \) takes constant values as \( x \) varies from 0 to 2. ### Step 1: Determine the intervals for \( \lfloor x^2 \rfloor \) 1. **For \( x \) in the interval [0, 1]:** - \( x^2 \) varies from \( 0^2 = 0 \) to \( 1^2 = 1 \). - Thus, \( \lfloor x^2 \rfloor = 0 \) in this interval. 2. **For \( x \) in the interval [1, \( \sqrt{2} \)]:** - \( x^2 \) varies from \( 1^2 = 1 \) to \( (\sqrt{2})^2 = 2 \). - Thus, \( \lfloor x^2 \rfloor = 1 \) in this interval. 3. **For \( x \) in the interval [\( \sqrt{2} \), \( \sqrt{3} \)]:** - \( x^2 \) varies from \( (\sqrt{2})^2 = 2 \) to \( (\sqrt{3})^2 = 3 \). - Thus, \( \lfloor x^2 \rfloor = 2 \) in this interval. 4. **For \( x \) in the interval [\( \sqrt{3} \), 2]:** - \( x^2 \) varies from \( (\sqrt{3})^2 = 3 \) to \( 2^2 = 4 \). - Thus, \( \lfloor x^2 \rfloor = 3 \) in this interval. ### Step 2: Set up the integral with the determined intervals Now we can express the integral as a sum of integrals over these intervals: \[ \int_{0}^{2} \lfloor x^2 \rfloor \, dx = \int_{0}^{1} 0 \, dx + \int_{1}^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx + \int_{\sqrt{3}}^{2} 3 \, dx \] ### Step 3: Evaluate each integral 1. **First integral:** \[ \int_{0}^{1} 0 \, dx = 0 \] 2. **Second integral:** \[ \int_{1}^{\sqrt{2}} 1 \, dx = [x]_{1}^{\sqrt{2}} = \sqrt{2} - 1 \] 3. **Third integral:** \[ \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx = 2[x]_{\sqrt{2}}^{\sqrt{3}} = 2(\sqrt{3} - \sqrt{2}) \] 4. **Fourth integral:** \[ \int_{\sqrt{3}}^{2} 3 \, dx = 3[x]_{\sqrt{3}}^{2} = 3(2 - \sqrt{3}) \] ### Step 4: Combine the results Now we can combine all the results: \[ \int_{0}^{2} \lfloor x^2 \rfloor \, dx = 0 + (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3}) \] Simplifying this expression: \[ = \sqrt{2} - 1 + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3} \] \[ = (6 - 1) + (\sqrt{2} - 2\sqrt{2}) + (2\sqrt{3} - 3\sqrt{3}) \] \[ = 5 - \sqrt{2} - \sqrt{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} \lfloor x^2 \rfloor \, dx = 5 - \sqrt{2} - \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(2)[x^(2)-x+1]dx, where [.] denotos the greatest integer function.

Evaluate int_(0)^(1/2)[x^(2)]dx

Evaluate int_(0)^(2)[x^(2)-x+1]dx, where [.] denotes the greatestinteger function.

Evaluate: int_(0)^(3) x^(2) dx

Evaluate : int_(0)^(4)x.e ^(2x) dx

Evaluate: int_(0)^(1)(2+x^(2))dx

Evaluate int_(0)^(2)3x^2dx

Evaluate int_(0)^(2)(x^(2)+1)dx

Evaluate int_(0)^(2)(3x^2-4)dx

Evaluate int_(0)^(2)(x^(2)+3)dx as limit of sums