Home
Class 12
MATHS
int(0)^(pi)(x tanx)/(secx+cosx)dx is...

`int_(0)^(pi)(x tanx)/(secx+cosx)dx` is

Text Solution

Verified by Experts

The correct Answer is:
`(pi^(2))/(4)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi)(x tan x)/(secx+cos x)dx

Evaluate the following : int_(0)^(pi)(x tanx)/(secx "cosec x")dx

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

int_(0)^(pi/3)(x)/(1+secx)dx

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx, B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx and B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_0^pi (xtanx)/(secx+tanx)dx