Home
Class 12
MATHS
Fina a unit vector in the direaction of ...

Fina a unit vector in the direaction of the resultant of the vectors `hati - hatj + 3hatk, 2 hati + hatj- 2 hatk and hati + 2 hatj- 2 hatk.`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector in the direction of the resultant of the given vectors \( \hat{i} - \hat{j} + 3\hat{k} \), \( 2\hat{i} + \hat{j} - 2\hat{k} \), and \( \hat{i} + 2\hat{j} - 2\hat{k} \), we will follow these steps: ### Step 1: Write down the vectors Let: - \( \vec{A} = \hat{i} - \hat{j} + 3\hat{k} \) - \( \vec{B} = 2\hat{i} + \hat{j} - 2\hat{k} \) - \( \vec{C} = \hat{i} + 2\hat{j} - 2\hat{k} \) ### Step 2: Find the resultant vector \( \vec{R} \) The resultant vector \( \vec{R} \) is the sum of the three vectors: \[ \vec{R} = \vec{A} + \vec{B} + \vec{C} \] Calculating the components: - For the \( \hat{i} \) component: \( 1 + 2 + 1 = 4 \) - For the \( \hat{j} \) component: \( -1 + 1 + 2 = 2 \) - For the \( \hat{k} \) component: \( 3 - 2 - 2 = -1 \) Thus, the resultant vector is: \[ \vec{R} = 4\hat{i} + 2\hat{j} - 1\hat{k} \] ### Step 3: Calculate the magnitude of the resultant vector \( |\vec{R}| \) The magnitude of \( \vec{R} \) is given by: \[ |\vec{R}| = \sqrt{(4)^2 + (2)^2 + (-1)^2} \] Calculating: \[ |\vec{R}| = \sqrt{16 + 4 + 1} = \sqrt{21} \] ### Step 4: Find the unit vector in the direction of \( \vec{R} \) The unit vector \( \hat{u} \) in the direction of \( \vec{R} \) is given by: \[ \hat{u} = \frac{\vec{R}}{|\vec{R}|} \] Substituting the values: \[ \hat{u} = \frac{4\hat{i} + 2\hat{j} - 1\hat{k}}{\sqrt{21}} \] ### Final Result Thus, the unit vector in the direction of the resultant vector is: \[ \hat{u} = \frac{4}{\sqrt{21}} \hat{i} + \frac{2}{\sqrt{21}} \hat{j} - \frac{1}{\sqrt{21}} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector in the direction of the resultant of the vectors hati+2hatj+3hatk,-hati+2hatj+hatk and 3hati+hatj .

Find the unit vector in the direction of the resultant of vectgors hati+2hatj+hat3k, -hati+2hatj+hatk and 3hati+hatj

Find the unit vector in the direction of the sum of the vectors veca=2hati+2hatj-5hatk and vecb=2hati+hatj+3hatk .

A unit vector in the direction of resultant vector of vecA = -2hati + 3hatj + hatk and vecB = hati + 2 hatj - 4 hatk is

Find the direction cosines of the resultant of the vectors (hati+hatj+hatk),(-hati+hatj+hatk),(hati-hatj+hatk) and (hati+hatj-hatk) .

Find a unit vector in the diection of the vector. (i) (3hati + 4hatj - 5hatk) , (ii) (3hati - 2hatj + 6hatk) (iii) (hati + hatk) , (iv) (2hati + hatj + 2hatk)

Find a unit vector parallel to the sum of the vector (hati + hatj + hatk) and (2hati - 3hatj + 5hatk) .

Show that the vectors 4hati-hatj+hatk, 3hati-2hatj-hatk and hati+hatj+2hatk are co-planar.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The unit vector parallel to the resultant of the vectors 2hati+3hatj-hatk and 4hati-3hatj+2hatk is

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. Fina a unit vector in the direaction of the resultant of the vectors h...

    Text Solution

    |

  2. The points A,B and C with position vectors 3 hati - y hatj + 2hatk, 5 ...

    Text Solution

    |

  3. If the sum of two unit vectors is a unit vector, prove that the mag...

    Text Solution

    |

  4. Let veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec ...

    Text Solution

    |

  5. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  6. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  7. If veca,vecb,vecc are mutually perpendicular vectors of equal magnitud...

    Text Solution

    |

  8. For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |vec...

    Text Solution

    |

  9. Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2...

    Text Solution

    |

  10. If veca, vecb and vecc are the position vectors of vertices A,B,C of a...

    Text Solution

    |

  11. Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca....

    Text Solution

    |

  12. if veca + vecb + vecc=0, then show that veca xx vecb = vecb xx vecc = ...

    Text Solution

    |

  13. If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, th...

    Text Solution

    |

  14. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  15. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  16. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  17. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  18. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  19. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  20. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  21. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |