Home
Class 12
MATHS
Find the value of p if (2 hati + 6 hatj ...

Find the value of p if `(2 hati + 6 hatj + 27 hatk )xx (hati+ 3 hatj + p hatk) = vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( p \) such that the cross product \[ (2 \hat{i} + 6 \hat{j} + 27 \hat{k}) \times (\hat{i} + 3 \hat{j} + p \hat{k}) = \vec{0} \] we will follow these steps: ### Step 1: Set up the cross product We will use the determinant form to compute the cross product. The vectors are: - First vector: \( \vec{A} = 2 \hat{i} + 6 \hat{j} + 27 \hat{k} \) - Second vector: \( \vec{B} = \hat{i} + 3 \hat{j} + p \hat{k} \) The cross product can be represented as: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & 3 & p \end{vmatrix} \] ### Step 2: Calculate the determinant We will expand the determinant: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} 6 & 27 \\ 3 & p \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 27 \\ 1 & p \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 6 \\ 1 & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 6 & 27 \\ 3 & p \end{vmatrix} = 6p - 81 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & 27 \\ 1 & p \end{vmatrix} = 2p - 27 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & 6 \\ 1 & 3 \end{vmatrix} = 6 - 6 = 0 \] ### Step 3: Combine the results Putting these together, we have: \[ \vec{A} \times \vec{B} = (6p - 81) \hat{i} - (2p - 27) \hat{j} + 0 \hat{k} \] ### Step 4: Set the cross product equal to the zero vector Since we want this cross product to equal the zero vector \( \vec{0} \): \[ (6p - 81) \hat{i} - (2p - 27) \hat{j} + 0 \hat{k} = 0 \] This gives us two equations: 1. \( 6p - 81 = 0 \) 2. \( -(2p - 27) = 0 \) ### Step 5: Solve the equations From the first equation: \[ 6p - 81 = 0 \implies 6p = 81 \implies p = \frac{81}{6} = \frac{27}{2} \] From the second equation: \[ -(2p - 27) = 0 \implies 2p - 27 = 0 \implies 2p = 27 \implies p = \frac{27}{2} \] Both equations give the same result. ### Final Answer Thus, the value of \( p \) is \[ \boxed{\frac{27}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of p, if the vectors hati - 2hatj + hatk , 2hati - 5hatj + phatk and 5hati - 9hatj + 4hatk are coplanar .

Find lambda and mu if (2hati+6hatj+27hatk)xx(hati+lambdahatj+muhatk) = vec0 .

Find the value of |(hati+hatj)xx(hati+2hatj+hatk)|

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the vector and cartesian equations of the plane containing the lines : vec(r) = hati + 2 hatj - 4 hatk + lambda (2 hati + 3 hatj + 6 hatk) and vec(r) = 3 hati + 3 hatj - 5 hatk + mu (-2 hatj + 3 hatj + 8 hatk) .

Calculate the values of (i) hatj. (2hati - 3hatj +hatk) and (ii) (2hati - hatj) (3hati + hatk)

Find the vector and catesian equations of the plane containing the lines : vec(r) = 2 hati + hatj - 3 hatk + lambda (hati + 2 hatj + 5 hatk ) and vec(r) = 3 hati + 3 hatj - 7 hatk + mu (3 hati - 2 hatj + 5 hatk ) .

(i) Find the distance of the point (-1,-5,-10) from the point of intersection of the line vec(r) = (2 hati - hatj + 2 hatk ) + lambda (3 hati + 4 hatj + 12 hatk) and the plane vec(r).(hati - hatj + hatk) = 5. (ii) Find the distance of the point with position vector - hati - 5 hatj - 10 hatk from the point of intersection of the line vec(r) = (2 hati - hatj + 2 hatk ) + lambda (3 hati + 4 hatj + 12 hatk ) and the plane vec(r). (hati - hatj + hatk)= 5. (iii) Find the distance of the point (2,12, 5) from the point of intersection of the line . vec(r) = 2 hati - 4 hatj + 2 hatk + lambda (3 hati + 4 hatj + 12 hatk ) and the plane vec(r). (hati - 2 hatj + hatk ) = 0.

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. Find the value of p if (2 hati + 6 hatj + 27 hatk )xx (hati+ 3 hatj + ...

    Text Solution

    |

  2. The points A,B and C with position vectors 3 hati - y hatj + 2hatk, 5 ...

    Text Solution

    |

  3. If the sum of two unit vectors is a unit vector, prove that the mag...

    Text Solution

    |

  4. Let veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec ...

    Text Solution

    |

  5. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  6. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  7. If veca,vecb,vecc are mutually perpendicular vectors of equal magnitud...

    Text Solution

    |

  8. For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |vec...

    Text Solution

    |

  9. Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2...

    Text Solution

    |

  10. If veca, vecb and vecc are the position vectors of vertices A,B,C of a...

    Text Solution

    |

  11. Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca....

    Text Solution

    |

  12. if veca + vecb + vecc=0, then show that veca xx vecb = vecb xx vecc = ...

    Text Solution

    |

  13. If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, th...

    Text Solution

    |

  14. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  15. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  16. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  17. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  18. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  19. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  20. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  21. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |