Home
Class 12
MATHS
If veca = 2 hati - 3hatj, vecb = hati + ...

If `veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk,` find `[a vecb vecc]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we can use the determinant method. Here’s a step-by-step solution: ### Step 1: Write the vectors in component form Given: - \(\vec{a} = 2\hat{i} - 3\hat{j} + 0\hat{k}\) - \(\vec{b} = 1\hat{i} + 1\hat{j} - 1\hat{k}\) - \(\vec{c} = 3\hat{i} + 0\hat{j} - 1\hat{k}\) ### Step 2: Set up the determinant The scalar triple product \([\vec{a} \, \vec{b} \, \vec{c}]\) can be represented as the determinant of a 3x3 matrix formed by the components of the vectors: \[ [\vec{a} \, \vec{b} \, \vec{c}] = \begin{vmatrix} 2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix} \] ### Step 3: Calculate the determinant We will expand the determinant along the first row: \[ [\vec{a} \, \vec{b} \, \vec{c}] = 2 \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} - (-3) \begin{vmatrix} 1 & -1 \\ 3 & -1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} = (1)(-1) - (0)(-1) = -1 \] Calculating the second determinant: \[ \begin{vmatrix} 1 & -1 \\ 3 & -1 \end{vmatrix} = (1)(-1) - (3)(-1) = -1 + 3 = 2 \] Now substituting these values back into the determinant calculation: \[ [\vec{a} \, \vec{b} \, \vec{c}] = 2(-1) + 3(2) + 0 = -2 + 6 + 0 = 4 \] ### Final Answer Thus, the scalar triple product \([\vec{a} \, \vec{b} \, \vec{c}] = 4\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

If veca = (hati - 2hatj), vecb = (2hati - 3hatj) and vecc = (2hati + 3hatk) , find (veca + vecb + vecc) .

If veca=2hati + hatj + hatk,vecb=hati + 2hatj + 2hatk ,vecc= hati + hatj + 2hatk and [vecavecbveci] hati+ [vecavecb vecj] hatj+ [veca vecb hatk] k is equal to

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca,' = hati + hatj, vecb'= hati - hatj + 2hatk nad vecc' = 2hati = hatj - hatk then the altitude of the parallelepiped formed by the vectors, veca, vecb and vecc having baswe formed by vecb and vecc is ( where veca' is recipocal vector veca, , etc.

If veca,' = hati + hatj, vecb'= hati - hatj + 2hatk nad vecc' = 2hati = hatj - hatk then the altitude of the parallelepiped formed by the vectors, veca, vecb and vecc having baswe formed by vecb and vecc is ( where veca' is recipocal vector veca, , etc.

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca = (hati + hatj + hatk), vecb = (4hati - 2hati + 3hatk) and vecc = (hati - 2hatj + hatk) , find a vector of magnitude 6 units which is parallel to the vector (2veca - vecb + 3vecc) .

If vecrxxveca=vecrxxvecb , veca=2hati-3hatj+4hatk, vecb=7hati+hatj-6hatk,vecc=hati+2hatj+hatk , and vecr*vecc=-3 then find vecr*veca

If vecA = 2hati + hatj -3hatk, vecB = hati- 2hatj + hatk and vecC = - hati + hatj - 4hatk , Calculate (i) vecA.(vecB xx vecC), (ii)vecC (vecAxx vecB), (iii) vecA xx (vecB xx vecC)

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hat...

    Text Solution

    |

  2. The points A,B and C with position vectors 3 hati - y hatj + 2hatk, 5 ...

    Text Solution

    |

  3. If the sum of two unit vectors is a unit vector, prove that the mag...

    Text Solution

    |

  4. Let veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec ...

    Text Solution

    |

  5. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  6. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  7. If veca,vecb,vecc are mutually perpendicular vectors of equal magnitud...

    Text Solution

    |

  8. For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |vec...

    Text Solution

    |

  9. Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2...

    Text Solution

    |

  10. If veca, vecb and vecc are the position vectors of vertices A,B,C of a...

    Text Solution

    |

  11. Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca....

    Text Solution

    |

  12. if veca + vecb + vecc=0, then show that veca xx vecb = vecb xx vecc = ...

    Text Solution

    |

  13. If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, th...

    Text Solution

    |

  14. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  15. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  16. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  17. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  18. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  19. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  20. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  21. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |