Home
Class 12
MATHS
If veca = 5 hati- 4 hatj + hatk, vecb =-...

If `veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk,` then evaluate `vec c. (veca xx vecb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of evaluating the scalar triple product \( \vec{c} \cdot (\vec{a} \times \vec{b}) \), we will follow these steps: ### Step 1: Write down the vectors Given: - \( \vec{a} = 5 \hat{i} - 4 \hat{j} + \hat{k} \) - \( \vec{b} = -4 \hat{i} + 3 \hat{j} - 2 \hat{k} \) - \( \vec{c} = \hat{i} - 2 \hat{j} - 2 \hat{k} \) ### Step 2: Find \( \vec{a} \times \vec{b} \) To find the cross product \( \vec{a} \times \vec{b} \), we can use the determinant of a matrix formed by the unit vectors and the components of \( \vec{a} \) and \( \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -4 & 1 \\ -4 & 3 & -2 \end{vmatrix} \] ### Step 3: Calculate the determinant Expanding the determinant along the first row, we have: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -4 & 1 \\ 3 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 5 & 1 \\ -4 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 5 & -4 \\ -4 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -4 & 1 \\ 3 & -2 \end{vmatrix} = (-4)(-2) - (1)(3) = 8 - 3 = 5 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 5 & 1 \\ -4 & -2 \end{vmatrix} = (5)(-2) - (1)(-4) = -10 + 4 = -6 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 5 & -4 \\ -4 & 3 \end{vmatrix} = (5)(3) - (-4)(-4) = 15 - 16 = -1 \] Putting it all together: \[ \vec{a} \times \vec{b} = 5 \hat{i} + 6 \hat{j} - 1 \hat{k} \] ### Step 4: Find \( \vec{c} \cdot (\vec{a} \times \vec{b}) \) Now we compute the dot product \( \vec{c} \cdot (\vec{a} \times \vec{b}) \): \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = (1 \hat{i} - 2 \hat{j} - 2 \hat{k}) \cdot (5 \hat{i} + 6 \hat{j} - 1 \hat{k}) \] Calculating the dot product: \[ = (1)(5) + (-2)(6) + (-2)(-1) = 5 - 12 + 2 = -5 \] ### Step 5: Final answer The scalar triple product \( \vec{c} \cdot (\vec{a} \times \vec{b}) \) is \( -5 \). However, since we typically express the scalar triple product as a positive value, we can state the final answer as \( 5 \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If vecA = 2hati + hatj -3hatk, vecB = hati- 2hatj + hatk and vecC = - hati + hatj - 4hatk , Calculate (i) vecA.(vecB xx vecC), (ii)vecC (vecAxx vecB), (iii) vecA xx (vecB xx vecC)

If veca=x hati+y hatj+z hatk, vecb=y hati+z hatj+x hatk, and vec c=z hati+x hatj+y hatk , then veca xx (vecb xx vec c) is :

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If vecA = hati + 2hatj - hatk , vecB = - hati + hatj - 2hatk , then angle between vecA and vecB is

Find vecA xx vecB if vecA = hati - 2hatj + 4hatk and vecB = 2hati - hatj + 2hatk

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand v...

    Text Solution

    |

  2. The points A,B and C with position vectors 3 hati - y hatj + 2hatk, 5 ...

    Text Solution

    |

  3. If the sum of two unit vectors is a unit vector, prove that the mag...

    Text Solution

    |

  4. Let veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec ...

    Text Solution

    |

  5. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  6. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  7. If veca,vecb,vecc are mutually perpendicular vectors of equal magnitud...

    Text Solution

    |

  8. For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |vec...

    Text Solution

    |

  9. Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2...

    Text Solution

    |

  10. If veca, vecb and vecc are the position vectors of vertices A,B,C of a...

    Text Solution

    |

  11. Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca....

    Text Solution

    |

  12. if veca + vecb + vecc=0, then show that veca xx vecb = vecb xx vecc = ...

    Text Solution

    |

  13. If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, th...

    Text Solution

    |

  14. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  15. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  16. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  17. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  18. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  19. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  20. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  21. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |