Home
Class 12
MATHS
If veca = hati - hatj + hatk, vecb= 2 ha...

If `veca = hati - hatj + hatk, vecb= 2 hati + hatj -hatk and vec c = lamda hati -hatj+ lamda hatk` are coplanar, find the value of `lamda.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \lambda \) for which the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar, we will use the concept of the scalar triple product. The scalar triple product of three vectors is zero if and only if the vectors are coplanar. ### Step-by-Step Solution: 1. **Identify the Vectors**: We have the following vectors: \[ \vec{a} = \hat{i} - \hat{j} + \hat{k} \] \[ \vec{b} = 2\hat{i} + \hat{j} - \hat{k} \] \[ \vec{c} = \lambda \hat{i} - \hat{j} + \lambda \hat{k} \] 2. **Set Up the Scalar Triple Product**: The scalar triple product can be calculated using the determinant of a matrix formed by the components of the vectors: \[ \text{Scalar Triple Product} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda \end{vmatrix} \] 3. **Calculate the Determinant**: We will compute the determinant: \[ = 1 \begin{vmatrix} 1 & -1 \\ -1 & \lambda \end{vmatrix} - (-1) \begin{vmatrix} 2 & -1 \\ \lambda & \lambda \end{vmatrix} + 1 \begin{vmatrix} 2 & 1 \\ \lambda & -1 \end{vmatrix} \] Now, calculating each of the 2x2 determinants: - For the first determinant: \[ = 1(\lambda - 1) = \lambda - 1 \] - For the second determinant: \[ = 2\lambda - (-1)(\lambda) = 2\lambda + \lambda = 3\lambda \] - For the third determinant: \[ = -2 - \lambda = -2 - \lambda \] Putting it all together: \[ \text{Determinant} = (\lambda - 1) + 3\lambda + (-2 - \lambda) \] Simplifying: \[ = \lambda - 1 + 3\lambda - 2 - \lambda = 3\lambda - 3 \] 4. **Set the Determinant to Zero**: Since the vectors are coplanar, we set the determinant equal to zero: \[ 3\lambda - 3 = 0 \] 5. **Solve for \( \lambda \)**: \[ 3\lambda = 3 \implies \lambda = 1 \] ### Final Answer: The value of \( \lambda \) is: \[ \lambda = 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If the vectors veca=2hati-hatj+hatk, vecb=hati+2hatj-hat(3k) and vecc= 3hati+lamda hatj+5hatk are coplanar the value of lamda is (A) -1 (B) 3 (C) -4 (D) -1/4

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. If veca = hati - hatj + hatk, vecb= 2 hati + hatj -hatk and vec c = la...

    Text Solution

    |

  2. The points A,B and C with position vectors 3 hati - y hatj + 2hatk, 5 ...

    Text Solution

    |

  3. If the sum of two unit vectors is a unit vector, prove that the mag...

    Text Solution

    |

  4. Let veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec ...

    Text Solution

    |

  5. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  6. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  7. If veca,vecb,vecc are mutually perpendicular vectors of equal magnitud...

    Text Solution

    |

  8. For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |vec...

    Text Solution

    |

  9. Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2...

    Text Solution

    |

  10. If veca, vecb and vecc are the position vectors of vertices A,B,C of a...

    Text Solution

    |

  11. Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca....

    Text Solution

    |

  12. if veca + vecb + vecc=0, then show that veca xx vecb = vecb xx vecc = ...

    Text Solution

    |

  13. If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, th...

    Text Solution

    |

  14. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  15. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  16. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  17. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  18. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  19. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  20. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  21. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |