Home
Class 12
MATHS
If |veca + vecb| =60 |veca-vecb|=40 and ...

If `|veca + vecb| =60 |veca-vecb|=40 and |vecb| = 46` find `|veca|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given information about the magnitudes of the vectors and apply the properties of vector addition and subtraction. ### Step 1: Write down the equations based on the given information. We are given: 1. \( |\vec{a} + \vec{b}| = 60 \) 2. \( |\vec{a} - \vec{b}| = 40 \) 3. \( |\vec{b}| = 46 \) ### Step 2: Square both sides of the first equation. From the first equation, we can square both sides: \[ |\vec{a} + \vec{b}|^2 = 60^2 \] This gives us: \[ |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} = 3600 \tag{1} \] ### Step 3: Square both sides of the second equation. Now, squaring the second equation: \[ |\vec{a} - \vec{b}|^2 = 40^2 \] This results in: \[ |\vec{a}|^2 + |\vec{b}|^2 - 2 \vec{a} \cdot \vec{b} = 1600 \tag{2} \] ### Step 4: Add the two equations (1) and (2). Adding equations (1) and (2): \[ \left( |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} \right) + \left( |\vec{a}|^2 + |\vec{b}|^2 - 2 \vec{a} \cdot \vec{b} \right) = 3600 + 1600 \] This simplifies to: \[ 2|\vec{a}|^2 + 2|\vec{b}|^2 = 5200 \] Dividing by 2: \[ |\vec{a}|^2 + |\vec{b}|^2 = 2600 \tag{3} \] ### Step 5: Substitute the value of \( |\vec{b}| \). We know \( |\vec{b}| = 46 \), so we can substitute this into equation (3): \[ |\vec{a}|^2 + 46^2 = 2600 \] Calculating \( 46^2 \): \[ 46^2 = 2116 \] Thus, we have: \[ |\vec{a}|^2 + 2116 = 2600 \] ### Step 6: Solve for \( |\vec{a}|^2 \). Now, we isolate \( |\vec{a}|^2 \): \[ |\vec{a}|^2 = 2600 - 2116 \] Calculating the right side: \[ |\vec{a}|^2 = 484 \] ### Step 7: Take the square root to find \( |\vec{a}| \). Finally, we take the square root: \[ |\vec{a}| = \sqrt{484} = 22 \] ### Conclusion: The magnitude of vector \( \vec{a} \) is \( 22 \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If |veca xx vecb|^(2) + |veca.vecb|^(2)=144 and |veca|=4 , then find the value of |vecb|

If vec A . vecB = vecA*vecB , find |vecA - vecB|

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb| .

Let veca and vecb be two vectors such that |2 veca + 3 vecb| = |3 veca + vecb| and the angle between veca and vecb is 60^(@) . If 1/8 veca is a unit vector, then |vecb| is equal to :

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|