Home
Class 12
MATHS
Write the projection of vecb + vecc on v...

Write the projection of `vecb + vecc` on `veca` where
`veca = 2 hati- 2 hatj +hatk, vecb = hati+ 2hatj- 2hatk and vecc = 2 hati- hatj+ 4 hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(\vec{b} + \vec{c}\) on the vector \(\vec{a}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k} \] \[ \vec{c} = 2\hat{i} - \hat{j} + 4\hat{k} \] ### Step 2: Calculate \(\vec{b} + \vec{c}\) We need to add the vectors \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} + \vec{c} = (\hat{i} + 2\hat{j} - 2\hat{k}) + (2\hat{i} - \hat{j} + 4\hat{k}) \] Combining like terms: \[ = (1 + 2)\hat{i} + (2 - 1)\hat{j} + (-2 + 4)\hat{k} \] \[ = 3\hat{i} + 1\hat{j} + 2\hat{k} \] Thus, \[ \vec{b} + \vec{c} = 3\hat{i} + \hat{j} + 2\hat{k} \] ### Step 3: Calculate the dot product \((\vec{b} + \vec{c}) \cdot \vec{a}\) Now we need to find the dot product of \(\vec{b} + \vec{c}\) with \(\vec{a}\): \[ \vec{a} \cdot (\vec{b} + \vec{c}) = (2\hat{i} - 2\hat{j} + \hat{k}) \cdot (3\hat{i} + \hat{j} + 2\hat{k}) \] Calculating the dot product: \[ = 2 \cdot 3 + (-2) \cdot 1 + 1 \cdot 2 \] \[ = 6 - 2 + 2 \] \[ = 6 \] ### Step 4: Calculate the magnitude of \(\vec{a}\) Next, we calculate the magnitude of \(\vec{a}\): \[ |\vec{a}| = \sqrt{(2)^2 + (-2)^2 + (1)^2} \] \[ = \sqrt{4 + 4 + 1} \] \[ = \sqrt{9} = 3 \] ### Step 5: Calculate the projection Finally, we can find the projection of \(\vec{b} + \vec{c}\) on \(\vec{a}\): \[ \text{Projection of } (\vec{b} + \vec{c}) \text{ on } \vec{a} = \frac{(\vec{b} + \vec{c}) \cdot \vec{a}}{|\vec{a}|} \] \[ = \frac{6}{3} = 2 \] ### Final Answer Thus, the projection of \(\vec{b} + \vec{c}\) on \(\vec{a}\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

Find vecA xx vecB if vecA = hati - 2hatj + 4hatk and vecB = 2hati - hatj + 2hatk

Find vecB xx vecA if vecA = 3hati - 2hatj + 6hatk and vecB = hati - hatj + hatk .

The volume of the parallelepiped whose edges are veca=2hati-3hatj+4hatk, vecb=hati+2hatj-hatk and vecc=2hati-hatj+2hatk is

Find the projection of veca=2hati-hatj+hatk ON vecb=hati-2hatj+hatk.

Obtain the magnitude of 2vecA - 3vecB if vecA = hati + hatj - 2hatk and B = 2hati - hatj + hatk .

If veca = 3 hati -4 hatj and vecb =- 2 hati + 3 hatk, what is vecc=veca xx vecb ?

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Find the angle between the vectors veca+vecb and veca-vecb if veca=2hati-hatj+3hatk and vecb=3hati+hatj-2hatk .