Home
Class 12
MATHS
For any three vectors veca, vecb and vec...

For any three vectors `veca, vecb and vecc` write value of the following `veca xx (vecb + vecc) + vecb xx (vecc + veca)+ vecc xx (veca + vecb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) \), we will expand and simplify it step by step. ### Step 1: Expand Each Cross Product We start by expanding each term in the expression: 1. \( \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \) 2. \( \vec{b} \times (\vec{c} + \vec{a}) = \vec{b} \times \vec{c} + \vec{b} \times \vec{a} \) 3. \( \vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \vec{c} \times \vec{b} \) Now, we can combine these results: \[ \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b} \] ### Step 2: Rearranging Terms Next, we can rearrange the terms to group them: \[ (\vec{a} \times \vec{b} + \vec{b} \times \vec{a}) + (\vec{a} \times \vec{c} + \vec{c} \times \vec{a}) + (\vec{b} \times \vec{c} + \vec{c} \times \vec{b}) \] ### Step 3: Apply the Property of Cross Products Using the property of cross products, where \( \vec{x} \times \vec{y} = -(\vec{y} \times \vec{x}) \): 1. \( \vec{b} \times \vec{a} = -\vec{a} \times \vec{b} \) 2. \( \vec{c} \times \vec{a} = -\vec{a} \times \vec{c} \) 3. \( \vec{c} \times \vec{b} = -\vec{b} \times \vec{c} \) Substituting these into our expression gives: \[ \vec{a} \times \vec{b} - \vec{a} \times \vec{b} + \vec{a} \times \vec{c} - \vec{a} \times \vec{c} + \vec{b} \times \vec{c} - \vec{b} \times \vec{c} \] ### Step 4: Simplifying the Expression Now, we can see that each pair cancels out: \[ 0 + 0 + 0 = 0 \] Thus, the value of the entire expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb , vecc)]=4 , then [(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))] is equal to

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca,vecb,vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these