Home
Class 12
MATHS
If for any two vectors veca and vecb. (...

If for any two vectors `veca and vecb.` `(veca + vecb )^(2) + (veca - vecb)^(2) =lamda[(veca)^(2)+ (vecb)^(2)]` then write the value of `lamda.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation step by step. The equation is: \[ (\vec{a} + \vec{b})^2 + (\vec{a} - \vec{b})^2 = \lambda [\vec{a}^2 + \vec{b}^2] \] ### Step 1: Expand the Left-Hand Side (LHS) We start by expanding the left-hand side of the equation: \[ (\vec{a} + \vec{b})^2 = \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = \|\vec{a}\|^2 + 2\vec{a} \cdot \vec{b} + \|\vec{b}\|^2 \] \[ (\vec{a} - \vec{b})^2 = \vec{a} \cdot \vec{a} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = \|\vec{a}\|^2 - 2\vec{a} \cdot \vec{b} + \|\vec{b}\|^2 \] Now, we add these two expansions together: \[ (\vec{a} + \vec{b})^2 + (\vec{a} - \vec{b})^2 = \left( \|\vec{a}\|^2 + 2\vec{a} \cdot \vec{b} + \|\vec{b}\|^2 \right) + \left( \|\vec{a}\|^2 - 2\vec{a} \cdot \vec{b} + \|\vec{b}\|^2 \right) \] ### Step 2: Simplify the LHS Combining the terms, we get: \[ = 2\|\vec{a}\|^2 + 2\|\vec{b}\|^2 \] ### Step 3: Rewrite the LHS Thus, we can rewrite the left-hand side as: \[ 2(\|\vec{a}\|^2 + \|\vec{b}\|^2) \] ### Step 4: Set the LHS Equal to the RHS Now, we equate the left-hand side to the right-hand side of the original equation: \[ 2(\|\vec{a}\|^2 + \|\vec{b}\|^2) = \lambda (\|\vec{a}\|^2 + \|\vec{b}\|^2) \] ### Step 5: Solve for \(\lambda\) Assuming \(\|\vec{a}\|^2 + \|\vec{b}\|^2 \neq 0\), we can divide both sides by \((\|\vec{a}\|^2 + \|\vec{b}\|^2)\): \[ 2 = \lambda \] Thus, we find: \[ \lambda = 2 \] ### Final Answer The value of \(\lambda\) is: \[ \lambda = 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

For any two vectors veca and vecb write when | veca + vecb|= | veca-vecb| holds.

For any two vectors veca and vecb prove that |veca.vecb|lt+|veca||vecb|

For any two vectors veca and vecb prove that |veca+vecb|lt+|veca|+|vecb|

For vectors vecA and vecB , (vecA + vecB). (vecA xx vecB) will be :

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If veca and vecb are any two vectors of magnitudes 1and 2. respectively, and (1-3veca.vecb)^(2)+|2veca+vecb+3(vecaxxvecb)|^(2)=47 then the angle between veca and vecb is

If [veca xx vecb vecb xx vec c vec c xx vec a] = lamda [veca vecb vec c ]^2 then lamda is equal to

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then