Home
Class 12
MATHS
If veca, vecb, vecc are three vectors su...

If `veca, vecb, vecc` are three vectors such that `veca + vecb+ vecc =0 and |veca| =5, |vecb|=12.|vecc|=13,` then find `vecavecb+vecb vec c + vec c veca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given the conditions \( \vec{a} + \vec{b} + \vec{c} = 0 \) and the magnitudes \( |\vec{a}| = 5 \), \( |\vec{b}| = 12 \), and \( |\vec{c}| = 13 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \vec{a} + \vec{b} + \vec{c} = 0 \] This implies that \( \vec{c} = -(\vec{a} + \vec{b}) \). 2. **Square both sides of the equation:** \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 0 \] Expanding this using the dot product: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] This expands to: \[ \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 3. **Substitute the magnitudes:** We know: \[ |\vec{a}|^2 = 5^2 = 25, \quad |\vec{b}|^2 = 12^2 = 144, \quad |\vec{c}|^2 = 13^2 = 169 \] Therefore, substituting these values: \[ 25 + 144 + 169 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 4. **Calculate the sum of the squares:** \[ 25 + 144 + 169 = 338 \] So we have: \[ 338 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 5. **Rearranging the equation:** \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -338 \] Dividing both sides by 2: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -169 \] ### Final Answer: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -169 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

a,b,c are three vectors, such that veca+vecb+vecc=0 , |veca|=1,|vecb|=2,|vecc|=3 , then veca.vecb+vecb.vecc+vecc.vecais equal to

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca, vecb and vecc are three vectors such that 3veca+4vecb+6vecc=vec0, |veca|=3, |vecb|=3 and |vecc|=4 , then the value of -864((veca.vecb+vecb.vecc+vecc.veca)/(6)) is equal to

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is