Home
Class 12
MATHS
If f(x) = {(sqrt(1 + sqrt(5 + x)-a)/((x-...

If `f(x) = {(sqrt(1 + sqrt(5 + x)-a)/((x-4)), 0 le x le 4),(b, x ge 4):}` is continuous at x = 4 then value of `1/(ab)` is equal to

A

4

B

15

C

8

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 4 \). This means that the left-hand limit (LHL) and right-hand limit (RHL) at \( x = 4 \) must be equal, and they must also equal the value of the function at that point. ### Step-by-Step Solution: 1. **Identify the Function**: The function is defined as: \[ f(x) = \begin{cases} \frac{\sqrt{1 + \sqrt{5 + x}} - a}{x - 4} & \text{for } 0 \leq x < 4 \\ b & \text{for } x \geq 4 \end{cases} \] 2. **Find the Left-Hand Limit (LHL) as \( x \) approaches 4**: We need to calculate: \[ \lim_{x \to 4^-} f(x) = \lim_{x \to 4} \frac{\sqrt{1 + \sqrt{5 + x}} - a}{x - 4} \] Substituting \( x = 4 \): \[ \sqrt{5 + 4} = \sqrt{9} = 3 \implies \sqrt{1 + 3} = \sqrt{4} = 2 \] Thus, we have: \[ \lim_{x \to 4} \frac{2 - a}{x - 4} \] This is an indeterminate form \( \frac{0}{0} \) when \( a = 2 \). Therefore, we set \( a = 2 \). 3. **Apply L'Hôpital's Rule**: Since we have an indeterminate form, we can apply L'Hôpital's Rule: \[ \lim_{x \to 4} \frac{2 - a}{x - 4} = \lim_{x \to 4} \frac{\frac{d}{dx}(\sqrt{1 + \sqrt{5 + x}} - a)}{\frac{d}{dx}(x - 4)} \] The derivative of the numerator: \[ \frac{d}{dx}(\sqrt{1 + \sqrt{5 + x}}) = \frac{1}{2\sqrt{1 + \sqrt{5 + x}}} \cdot \frac{1}{2\sqrt{5 + x}} = \frac{1}{4\sqrt{1 + \sqrt{5 + x}} \sqrt{5 + x}} \] The derivative of the denominator is simply \( 1 \). 4. **Evaluate the Limit**: Now substituting \( x = 4 \): \[ \lim_{x \to 4} \frac{1}{4\sqrt{1 + 3}\sqrt{9}} = \frac{1}{4 \cdot 2 \cdot 3} = \frac{1}{24} \] Thus, \( \text{LHL} = \frac{1}{24} \). 5. **Find the Right-Hand Limit (RHL)**: The RHL at \( x = 4 \) is simply \( f(4) = b \). 6. **Set the Limits Equal for Continuity**: For continuity at \( x = 4 \): \[ \frac{1}{24} = b \] 7. **Calculate \( 1/(ab) \)**: We have \( a = 2 \) and \( b = \frac{1}{24} \): \[ 1/(ab) = 1/(2 \cdot \frac{1}{24}) = 1/( \frac{2}{24}) = 1/( \frac{1}{12}) = 12 \] ### Final Answer: \[ \frac{1}{ab} = 12 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 109

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 22

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

If f(x) {:(=(sin4x)/(5x)+a", if " x gt 0 ),( = 6x+4 -b ", if " x le 0):} is continuous at x = 0 , then : a+ b =

If f(x) = {(3x-4,",",0 le x le 2),(2x+k,",",2 lt x le 3):} is continuous in [0,3], then the value of k is

If f(x) {:( =(sin 4x)/(5x)+a", if " x gt 0 ),(=x + 4 - b ", if " x le 0 ) :} is continuous at x= 0 , then a+ b - = ……

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

NTA MOCK TESTS-NTA JEE MOCK TEST 19-MATHEMATICS
  1. If the letters of the word CORONA are arranged in all possible ways an...

    Text Solution

    |

  2. The solution of the differential equation dy - (ydx)/(2x) = sqrt(x) yd...

    Text Solution

    |

  3. If (cot^-01 x)^2 -7(cot^-1 x)+10gt0 then range of x will be

    Text Solution

    |

  4. If alpha != beta but, alpha^(2) = 4alpha - 2 and beta^(2) = 4beta - 2 ...

    Text Solution

    |

  5. The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2...

    Text Solution

    |

  6. If C(0), C(1), C(2),..., C(n) are binomial coefficients in the ex...

    Text Solution

    |

  7. The value of the integral int((sin x)/(x))^(6)((x cos x - sin x)/(x^2)...

    Text Solution

    |

  8. If the difference between the number of subsets of two sets A and B is...

    Text Solution

    |

  9. The function f : [0, 7] to [0, 70] where f(x) = x^(3) - 12x^(2) + 45x,...

    Text Solution

    |

  10. The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)...

    Text Solution

    |

  11. The value of lim(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

    Text Solution

    |

  12. The number of values of p for which the lines x+ y - 1 = 0, px + 2y + ...

    Text Solution

    |

  13. If y = 1/x , then the value of (dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x...

    Text Solution

    |

  14. From a point P(3, 3) on the circle x^(2) + y^(2) =18 , two chords PQ a...

    Text Solution

    |

  15. The equation of parabola which cuts the parabola y^(2) = 4bx orthogona...

    Text Solution

    |

  16. If sum(i=1)^(5) (x(i) - 6) = 5 and sum(i=1)^(5)(x(i)-6)^(2) = 25, then...

    Text Solution

    |

  17. If the image of the point P(1, -2,3) in the plane 2x+ 3y + 4z + 22 = 0...

    Text Solution

    |

  18. tan^(6)20^(@) - 33tan^(2) 20^(@) + 27 tan^(2) 20^(@) + 4=

    Text Solution

    |

  19. If f(x) = {(sqrt(1 + sqrt(5 + x)-a)/((x-4)), 0 le x le 4),(b, x ge 4):...

    Text Solution

    |

  20. If P(1) = 1 - (w)/2 + (w^2)/4 - (w^3)/(8) + ……… oo and P(2) = (1 - om...

    Text Solution

    |