Home
Class 12
MATHS
Let vecp2hati+hatj-2hatk, vecq=hati+hatj...

Let `vecp2hati+hatj-2hatk, vecq=hati+hatj.` If `vecr` is a vector such that `vecp. Vecr=|vecr|, |vecr-vecp|=2sqrt2` and the angle between `vecp xx vecq and vecr` is `(pi)/(6)`, then the value of `|(vecpxxvecq)xx vecr|` is equal to

A

`(3)/(2)`

B

`(1)/(2)`

C

`(3sqrt3)/(2)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and calculate the required value. ### Step 1: Define the vectors Given: \[ \vec{p} = 2\hat{i} + \hat{j} - 2\hat{k}, \quad \vec{q} = \hat{i} + \hat{j} \] ### Step 2: Calculate \(\vec{p} \times \vec{q}\) To find \(\vec{p} \times \vec{q}\), we will use the determinant of a matrix formed by the unit vectors and the components of \(\vec{p}\) and \(\vec{q}\). \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -2 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i} (1 \cdot 0 - 1 \cdot (-2)) - \hat{j} (2 \cdot 0 - 1 \cdot (-2)) + \hat{k} (2 \cdot 1 - 1 \cdot 1) \] \[ = \hat{i} (0 + 2) - \hat{j} (0 + 2) + \hat{k} (2 - 1) \] \[ = 2\hat{i} - 2\hat{j} + 1\hat{k} \] Thus, \[ \vec{p} \times \vec{q} = 2\hat{i} - 2\hat{j} + \hat{k} \] ### Step 3: Find the magnitude of \(\vec{p} \times \vec{q}\) \[ |\vec{p} \times \vec{q}| = \sqrt{(2)^2 + (-2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 4: Use the given conditions We know: 1. \(\vec{p} \cdot \vec{r} = |\vec{r}|\) 2. \(|\vec{r} - \vec{p}| = 2\sqrt{2}\) From the second condition, squaring both sides gives: \[ |\vec{r} - \vec{p}|^2 = (2\sqrt{2})^2 = 8 \] This expands to: \[ |\vec{r}|^2 - 2\vec{r} \cdot \vec{p} + |\vec{p}|^2 = 8 \] ### Step 5: Calculate \(|\vec{p}|\) \[ |\vec{p}| = \sqrt{(2)^2 + (1)^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 6: Substitute into the equation Substituting \(\vec{p} \cdot \vec{r} = |\vec{r}|\) into the equation: \[ |\vec{r}|^2 - 2|\vec{r}| + 9 - 8 = 0 \] This simplifies to: \[ |\vec{r}|^2 - 2|\vec{r}| + 1 = 0 \] Factoring gives: \[ (|\vec{r}| - 1)^2 = 0 \implies |\vec{r}| = 1 \] ### Step 7: Find \(|(\vec{p} \times \vec{q}) \times \vec{r}|\) Using the formula: \[ |(\vec{p} \times \vec{q}) \times \vec{r}| = |\vec{p} \times \vec{q}| \cdot |\vec{r}| \cdot \sin(\theta) \] Where \(\theta = \frac{\pi}{6}\): \[ |(\vec{p} \times \vec{q}) \times \vec{r}| = 3 \cdot 1 \cdot \sin\left(\frac{\pi}{6}\right) = 3 \cdot 1 \cdot \frac{1}{2} = \frac{3}{2} \] ### Final Answer \[ |(\vec{p} \times \vec{q}) \times \vec{r}| = \frac{3}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=hati+2hatj-hatk, vecb=hati-hatj and vecc=hati-hatj-hatk be three given vectors. If vecr is a vector such that vecr xx veca=vecc xx veca and vecr*vecb=0 , then vecr*veca is equal to _______.

Let veca=-hati-hatk, vecb=-hati+hatj and vecc=hati+2hatj+3hatk be three given vectors. If vecr is a vector such that vecrxxvecb=veccxxvecb and vecr.veca=0 , then the value of vecr.vecb is

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecd and vecr.veca =0 then find the value of vecr .vecb .

If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If vectors vecP,vecQ and vecR have magnitude 5,12 and 13 units and vecP+vecQ=vecR , the angle between vecQ and vecR is :

vecp=3hati+2hatj+hatk ,vecq=2hati+hatj+hatk, vecr is bot to both vecp+vecq and (vecp-vecq), absvecr=sqrt3. vecr=ahati+bhatj+chatk. then find absveca + absvecb + absvecc .

Let veca = hati + hatj + hatk and let vecr be a variable vector such that vecr.hati, vecr.hatj and vecr.hatk are posititve integers. If vecr.veca le 12 , then the total number of such vectors is:

NTA MOCK TESTS-NTA JEE MOCK TEST 36-MATHEMATICS
  1. Let alpha and beta be the roots of the equation x^(2)+ax+1=0, a ne0. T...

    Text Solution

    |

  2. The value of the expression 1+"cosec"(pi)/(4)+"cosec"(pi)/(8)+"cosec"(...

    Text Solution

    |

  3. Let vecp2hati+hatj-2hatk, vecq=hati+hatj. If vecr is a vector such tha...

    Text Solution

    |

  4. The solution of the differential equation x cos y (dy)/(dx)+siny =1 is...

    Text Solution

    |

  5. Let |z(1)|=1, |z(2)|=2, |z(3)|=3 and z(1)+z(2)+z(3)=3+sqrt5i, then the...

    Text Solution

    |

  6. If from the top of a tower 80 meters high the angles of depression of ...

    Text Solution

    |

  7. The radius of circle, touching the parabola y^(2)=8x at (2, 4) and pas...

    Text Solution

    |

  8. Distance between two non - intersecting planes P(1) and P(2) is 5 unit...

    Text Solution

    |

  9. Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)]. If Z=...

    Text Solution

    |

  10. The sum of 10 terms of the series 1+2(1.1)+3(1.1)^(2)+4(1.1)^(3)+…. is

    Text Solution

    |

  11. The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

    Text Solution

    |

  12. The tangent at any point on the curve xy = 4 makes intercepls on the c...

    Text Solution

    |

  13. The number of ways in which 10 boys can be divied into 2 groups of 5, ...

    Text Solution

    |

  14. The value of int(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

    Text Solution

    |

  15. The line (K+1)^(2)x+Ky-2K^(2)-2=0 passes through the point (m, n) for ...

    Text Solution

    |

  16. If A and B are non - singular matrices of order 3xx3, such that A=(adj...

    Text Solution

    |

  17. Line L(1)-=3x-4y+1=0 touches the cirlces C(1) and C(2). Centres of C(1...

    Text Solution

    |

  18. If lim(xrarroo)(ae^(x)+b cos x+c +dx)/(xsin^(2)x)=3, then the value of...

    Text Solution

    |

  19. A purse contains 10 ten rupee coins and 5 five rupee coins. Two coins ...

    Text Solution

    |

  20. If f(x)={{:(((2^(x)-1)^(2)tan3x)/(xsin^(2)x)":",0ltxltpi//6),(lambda"...

    Text Solution

    |