Home
Class 12
MATHS
Let |z(1)|=1, |z(2)|=2, |z(3)|=3 and z(1...

Let `|z_(1)|=1, |z_(2)|=2, |z_(3)|=3 and z_(1)+z_(2)+z_(3)=3+sqrt5i`, then the value of `Re(z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1)))` is equalto (where `z_(1), z_(2) and z_(3)` are complex numbers)

A

1

B

`-1`

C

`-(1)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \) given the conditions on the magnitudes of the complex numbers \( z_1, z_2, z_3 \) and their sum. ### Step 1: Understand the given conditions We are given: - \( |z_1| = 1 \) - \( |z_2| = 2 \) - \( |z_3| = 3 \) - \( z_1 + z_2 + z_3 = 3 + \sqrt{5} i \) ### Step 2: Calculate the modulus of the sum To find the modulus of the sum \( z_1 + z_2 + z_3 \): \[ |z_1 + z_2 + z_3| = |3 + \sqrt{5} i| = \sqrt{3^2 + (\sqrt{5})^2} = \sqrt{9 + 5} = \sqrt{14} \] ### Step 3: Apply the triangle inequality By the triangle inequality, we know: \[ |z_1 + z_2 + z_3| \leq |z_1| + |z_2| + |z_3| \] Substituting the known values: \[ \sqrt{14} \leq 1 + 2 + 3 = 6 \] This inequality holds, but we need to check if equality can occur. ### Step 4: Check for equality condition Equality in the triangle inequality holds if \( z_1, z_2, z_3 \) are collinear in the complex plane. This means they can be represented as: \[ z_1 = e^{i\theta}, \quad z_2 = 2e^{i\theta}, \quad z_3 = 3e^{i\theta} \] for some angle \( \theta \). ### Step 5: Express the sum If we assume they are collinear: \[ z_1 + z_2 + z_3 = e^{i\theta} + 2e^{i\theta} + 3e^{i\theta} = (1 + 2 + 3)e^{i\theta} = 6e^{i\theta} \] Setting this equal to \( 3 + \sqrt{5} i \) gives: \[ 6e^{i\theta} = 3 + \sqrt{5} i \] ### Step 6: Find \( e^{i\theta} \) Dividing both sides by 6: \[ e^{i\theta} = \frac{1}{2} + \frac{\sqrt{5}}{6} i \] Now, we can find the real and imaginary parts. ### Step 7: Calculate \( z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1} \) Using the expressions: \[ z_1 = e^{i\theta}, \quad z_2 = 2e^{i\theta}, \quad z_3 = 3e^{i\theta} \] We compute: \[ z_1 \overline{z_2} = e^{i\theta} \cdot 2e^{-i\theta} = 2 \] \[ z_2 \overline{z_3} = 2e^{i\theta} \cdot 3e^{-i\theta} = 6 \] \[ z_3 \overline{z_1} = 3e^{i\theta} \cdot e^{-i\theta} = 3 \] Adding these: \[ z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1} = 2 + 6 + 3 = 11 \] ### Step 8: Find the real part Since \( 11 \) is a real number, we have: \[ \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 11 \] ### Final Answer The value of \( \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \) is \( \boxed{11} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)| = |z_(2)| = |z_(3)| = 1 and z_(1) + z_(2) + z_(3) = sqrt(2) + i , then the number z_(1)bar(z)_(2)+z_(2)bar(z)_(3) + z_(3)bar(z)_(1) is :

If |z_(1)|=|z_(2)|=|z_(3)|=1 and z_(1)+z_(2)+z_(3)=sqrt(2)+i , then the complex number z_(2)barz_(3)+z_(3)barz_(1)+z_(1)barz_(2) , is

Let |z_(1)|=3, |z_(2)|=2 and z_(1)+z_(2)+z_(3)=3+4i . If the real part of (z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1))) is equal to 4, then |z_(3)| is equal to (where, i^(2)=-1 )

If |z_(1)-1|<1,|z_(2)-2|<2|z_(3)-3|<3 then |z_(1)+z_(2)+z_(3)|

If z_(1) + z_(2) + z_(3) = 0 and |z_(1)| = |z_(2)| = |z_(3)| = 1 , then value of z_(1)^(2) + z_(2)^(2) + z_(3)^(2) equals

Let z_(1), z_(2), z_(3) be three non-zero complex numbers such that z_(1) bar(z)_(2) = z_(2) bar(z)_(3) = z_(3) bar(z)_(1) , then z_(1), z_(2), z_(3)

If arg(z_(2)-z_(1))+arg(z_(3)-z_(1))=2arg(z-z_(1)) where z,z_(1),z_(2) and z_(3) ,are complex numbers, then the locus of z is

If |z_(1)|=|z_(2)|=|z_(3)| and z_(1)+z_(2)+z_(3)=0 , then z_(1),z_(2),z_(3) are vertices of

NTA MOCK TESTS-NTA JEE MOCK TEST 36-MATHEMATICS
  1. Let vecp2hati+hatj-2hatk, vecq=hati+hatj. If vecr is a vector such tha...

    Text Solution

    |

  2. The solution of the differential equation x cos y (dy)/(dx)+siny =1 is...

    Text Solution

    |

  3. Let |z(1)|=1, |z(2)|=2, |z(3)|=3 and z(1)+z(2)+z(3)=3+sqrt5i, then the...

    Text Solution

    |

  4. If from the top of a tower 80 meters high the angles of depression of ...

    Text Solution

    |

  5. The radius of circle, touching the parabola y^(2)=8x at (2, 4) and pas...

    Text Solution

    |

  6. Distance between two non - intersecting planes P(1) and P(2) is 5 unit...

    Text Solution

    |

  7. Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)]. If Z=...

    Text Solution

    |

  8. The sum of 10 terms of the series 1+2(1.1)+3(1.1)^(2)+4(1.1)^(3)+…. is

    Text Solution

    |

  9. The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

    Text Solution

    |

  10. The tangent at any point on the curve xy = 4 makes intercepls on the c...

    Text Solution

    |

  11. The number of ways in which 10 boys can be divied into 2 groups of 5, ...

    Text Solution

    |

  12. The value of int(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

    Text Solution

    |

  13. The line (K+1)^(2)x+Ky-2K^(2)-2=0 passes through the point (m, n) for ...

    Text Solution

    |

  14. If A and B are non - singular matrices of order 3xx3, such that A=(adj...

    Text Solution

    |

  15. Line L(1)-=3x-4y+1=0 touches the cirlces C(1) and C(2). Centres of C(1...

    Text Solution

    |

  16. If lim(xrarroo)(ae^(x)+b cos x+c +dx)/(xsin^(2)x)=3, then the value of...

    Text Solution

    |

  17. A purse contains 10 ten rupee coins and 5 five rupee coins. Two coins ...

    Text Solution

    |

  18. If f(x)={{:(((2^(x)-1)^(2)tan3x)/(xsin^(2)x)":",0ltxltpi//6),(lambda"...

    Text Solution

    |

  19. If f:R rarr (0, pi//2], f(x)=sin^(-1)((40)/(x^(2)+x+lambda)) is a surj...

    Text Solution

    |

  20. If f:Rrarr R is a function defined as f(x^(3))=x^(5), AA x in R -{0} a...

    Text Solution

    |