Home
Class 12
MATHS
Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(...

Let `Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)]`. If `Z=PQ^(-1)`, where Q is a square matrix of order 3, then the value of `Tr((adjQ)P)` is equal to (where `Tr(A)` represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix A and adjB represents the adjoint matrix of matrix B)

A

3

B

`-1`

C

4

D

`(6)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will follow the instructions provided in the video transcript and derive the required value of \( \text{Tr}((\text{adj} Q) P) \). ### Step 1: Define the matrices Given: \[ Z = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 1 & 2 \\ 3 & 1 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix \( Z \) To find \( \det(Z) \), we can use the formula for the determinant of a 3x3 matrix: \[ \det(Z) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( Z = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). For our matrix \( Z \): - \( a = 1, b = 1, c = 3 \) - \( d = 5, e = 1, f = 2 \) - \( g = 3, h = 1, i = 0 \) Calculating: \[ \det(Z) = 1(1 \cdot 0 - 2 \cdot 1) - 1(5 \cdot 0 - 2 \cdot 3) + 3(5 \cdot 1 - 1 \cdot 3) \] \[ = 1(0 - 2) - 1(0 - 6) + 3(5 - 3) \] \[ = -2 + 6 + 6 = 10 \] ### Step 3: Calculate the determinant of matrix \( P \) Using the same formula for \( P \): \[ P = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \] Calculating: \[ \det(P) = 1(1 \cdot 1 - 0 \cdot 0) - 0(2 \cdot 1 - 0 \cdot 3) + 2(2 \cdot 0 - 1 \cdot 3) \] \[ = 1(1) - 0 + 2(0 - 3) = 1 - 6 = -5 \] ### Step 4: Relate \( Z \), \( P \), and \( Q \) From the problem statement, we have: \[ Z = P Q^{-1} \] Taking determinants on both sides: \[ \det(Z) = \det(P) \cdot \det(Q^{-1}) = \det(P) \cdot \frac{1}{\det(Q)} \] Substituting the values: \[ 10 = -5 \cdot \frac{1}{\det(Q)} \] Thus, \[ \det(Q) = -\frac{5}{10} = -\frac{1}{2} \] ### Step 5: Use the relationship to find \( \text{Tr}((\text{adj} Q) P) \) We know: \[ Z \cdot \det(Q) = P \cdot \text{adj}(Q) \] Substituting \( \det(Q) \): \[ Z \cdot \left(-\frac{1}{2}\right) = P \cdot \text{adj}(Q) \] Thus, \[ -\frac{1}{2} Z = P \cdot \text{adj}(Q) \] ### Step 6: Calculate \( \text{Tr}((\text{adj} Q) P) \) Taking the trace on both sides: \[ \text{Tr}\left(-\frac{1}{2} Z\right) = \text{Tr}(P \cdot \text{adj}(Q)) \] Using the property of trace: \[ \text{Tr}(AB) = \text{Tr}(BA) \] We have: \[ \text{Tr}(P \cdot \text{adj}(Q)) = \text{Tr}((\text{adj}(Q)) P) \] Calculating \( \text{Tr}(Z) \): \[ \text{Tr}(Z) = 1 + 1 + 0 = 2 \] Thus: \[ -\frac{1}{2} \cdot 2 = -1 \] ### Final Result Therefore, the value of \( \text{Tr}((\text{adj} Q) P) \) is: \[ \text{Tr}((\text{adj} Q) P) = -1 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)] , then tr(Aadj(adjA)) is equal to (where, tr (P) denotes the trace of the matrix P i.e. the sum of all the diagonal elements of the matrix P and adj(P) denotes the adjoint of matrix P)

Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)] , where a, b, c are positive integers. If tr(A)=7 , then the greatest value of |A| is (where tr (A) denotes the trace of matric A i.e. the sum of principal diagonal elements of matrix A)

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

(A^(3))^(-1)=(A^(-1))^(3) , where A is a square matrix and |A|!=0

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to

If A is matrix of order 3 such that |A|=5 and B= adj A, then the value of ||A^(-1)|(AB)^(T)| is equal to (where |A| denotes determinant of matrix A. A^(T) denotes transpose of matrix A, A^(-1) denotes inverse of matrix A. adj A denotes adjoint of matrix A)

Let A and B be two square matrices of order 3 such that |A|=3 and |B|=2 , then the value of |A^(-1).adj(B^(-1)).adj(2A^(-1))| is equal to (where adj(M) represents the adjoint matrix of M)

For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(x^(2)+1)),0,0),(0,(x)/(4),0),(0,0,(1)/(36)] be two matrices and C=AB+(AB)^(2)+….+(AB)^(n). Then, Tr(lim_(nrarroo)C) is equal to (where Tr(A) is the trace of the matrix A i.e. the sum of the principle diagonal elements of A)

NTA MOCK TESTS-NTA JEE MOCK TEST 36-MATHEMATICS
  1. Let vecp2hati+hatj-2hatk, vecq=hati+hatj. If vecr is a vector such tha...

    Text Solution

    |

  2. The solution of the differential equation x cos y (dy)/(dx)+siny =1 is...

    Text Solution

    |

  3. Let |z(1)|=1, |z(2)|=2, |z(3)|=3 and z(1)+z(2)+z(3)=3+sqrt5i, then the...

    Text Solution

    |

  4. If from the top of a tower 80 meters high the angles of depression of ...

    Text Solution

    |

  5. The radius of circle, touching the parabola y^(2)=8x at (2, 4) and pas...

    Text Solution

    |

  6. Distance between two non - intersecting planes P(1) and P(2) is 5 unit...

    Text Solution

    |

  7. Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)]. If Z=...

    Text Solution

    |

  8. The sum of 10 terms of the series 1+2(1.1)+3(1.1)^(2)+4(1.1)^(3)+…. is

    Text Solution

    |

  9. The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

    Text Solution

    |

  10. The tangent at any point on the curve xy = 4 makes intercepls on the c...

    Text Solution

    |

  11. The number of ways in which 10 boys can be divied into 2 groups of 5, ...

    Text Solution

    |

  12. The value of int(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

    Text Solution

    |

  13. The line (K+1)^(2)x+Ky-2K^(2)-2=0 passes through the point (m, n) for ...

    Text Solution

    |

  14. If A and B are non - singular matrices of order 3xx3, such that A=(adj...

    Text Solution

    |

  15. Line L(1)-=3x-4y+1=0 touches the cirlces C(1) and C(2). Centres of C(1...

    Text Solution

    |

  16. If lim(xrarroo)(ae^(x)+b cos x+c +dx)/(xsin^(2)x)=3, then the value of...

    Text Solution

    |

  17. A purse contains 10 ten rupee coins and 5 five rupee coins. Two coins ...

    Text Solution

    |

  18. If f(x)={{:(((2^(x)-1)^(2)tan3x)/(xsin^(2)x)":",0ltxltpi//6),(lambda"...

    Text Solution

    |

  19. If f:R rarr (0, pi//2], f(x)=sin^(-1)((40)/(x^(2)+x+lambda)) is a surj...

    Text Solution

    |

  20. If f:Rrarr R is a function defined as f(x^(3))=x^(5), AA x in R -{0} a...

    Text Solution

    |