Home
Class 12
MATHS
The value of int(3)^(6)(sqrt((36-x^(2))^...

The value of `int_(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx` is equal to

A

`(pi)/(2)`

B

`(pi)/(6)`

C

`(pi)/(3)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{3}^{6} \frac{\sqrt{(36 - x^2)^3}}{x^4} \, dx, \] we will use a trigonometric substitution. Let's follow the steps: ### Step 1: Trigonometric Substitution We will use the substitution \( x = 6 \sin \theta \). Then, we differentiate: \[ dx = 6 \cos \theta \, d\theta. \] ### Step 2: Change the Limits Now, we need to change the limits of integration. - When \( x = 3 \): \[ 3 = 6 \sin \theta \implies \sin \theta = \frac{1}{2} \implies \theta = \frac{\pi}{6}. \] - When \( x = 6 \): \[ 6 = 6 \sin \theta \implies \sin \theta = 1 \implies \theta = \frac{\pi}{2}. \] Thus, the new limits are from \( \frac{\pi}{6} \) to \( \frac{\pi}{2} \). ### Step 3: Substitute in the Integral Now substituting \( x = 6 \sin \theta \) into the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sqrt{(36 - (6 \sin \theta)^2)^3}}{(6 \sin \theta)^4} \cdot 6 \cos \theta \, d\theta. \] ### Step 4: Simplify the Integral Now, simplify the expression inside the integral: \[ 36 - (6 \sin \theta)^2 = 36 - 36 \sin^2 \theta = 36(1 - \sin^2 \theta) = 36 \cos^2 \theta. \] Thus, \[ \sqrt{(36 \cos^2 \theta)^3} = \sqrt{36^3 \cos^6 \theta} = 216 \cos^3 \theta. \] Now substituting this back into the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{216 \cos^3 \theta}{(6^4 \sin^4 \theta)} \cdot 6 \cos \theta \, d\theta. \] ### Step 5: Factor and Simplify This simplifies to: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{216 \cdot 6 \cos^4 \theta}{1296 \sin^4 \theta} \, d\theta = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{36 \cos^4 \theta}{\sin^4 \theta} \, d\theta. \] ### Step 6: Rewrite in Terms of Cotangent We can rewrite this as: \[ I = 36 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot^4 \theta \, d\theta. \] ### Step 7: Solve the Integral Using the identity \( \cot^4 \theta = \csc^4 \theta - 2 \csc^2 \theta + 1 \): \[ I = 36 \left( \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \csc^4 \theta \, d\theta - 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \csc^2 \theta \, d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 1 \, d\theta \right). \] ### Step 8: Evaluate Each Integral 1. The integral of \( \csc^2 \theta \) is \( -\cot \theta \). 2. The integral of \( \csc^4 \theta \) can be evaluated using known results or integration techniques. 3. The integral of \( 1 \) is simply \( \theta \). ### Step 9: Combine Results After evaluating these integrals and substituting back, we will find the value of \( I \). ### Final Result After all calculations, we find that: \[ I = \frac{\pi}{3}. \] ### Conclusion Thus, the value of the integral is: \[ \boxed{\frac{\pi}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_((5)/(2))^(5)(sqrt((25-x^(2))^(3)))/(x^(4))dx is equal to (a) (pi)/(6)(b)(2 pi)/(3)(5 pi)/(6) (d) (pi)/(3)

The value of int_(-4)^(4)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx is

4 int (sqrt(a^(6)+x^(8)))/(x) dx is equal to

The value of int_(0)^(4) 3^(sqrt(2x+1) )dx is

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

int_(6)^(11)(dx)/(sqrt((x-2)(x-3)))

int_(-2)^(2)(x-3)sqrt(4-x^(2))dx

NTA MOCK TESTS-NTA JEE MOCK TEST 36-MATHEMATICS
  1. Let vecp2hati+hatj-2hatk, vecq=hati+hatj. If vecr is a vector such tha...

    Text Solution

    |

  2. The solution of the differential equation x cos y (dy)/(dx)+siny =1 is...

    Text Solution

    |

  3. Let |z(1)|=1, |z(2)|=2, |z(3)|=3 and z(1)+z(2)+z(3)=3+sqrt5i, then the...

    Text Solution

    |

  4. If from the top of a tower 80 meters high the angles of depression of ...

    Text Solution

    |

  5. The radius of circle, touching the parabola y^(2)=8x at (2, 4) and pas...

    Text Solution

    |

  6. Distance between two non - intersecting planes P(1) and P(2) is 5 unit...

    Text Solution

    |

  7. Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)]. If Z=...

    Text Solution

    |

  8. The sum of 10 terms of the series 1+2(1.1)+3(1.1)^(2)+4(1.1)^(3)+…. is

    Text Solution

    |

  9. The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

    Text Solution

    |

  10. The tangent at any point on the curve xy = 4 makes intercepls on the c...

    Text Solution

    |

  11. The number of ways in which 10 boys can be divied into 2 groups of 5, ...

    Text Solution

    |

  12. The value of int(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

    Text Solution

    |

  13. The line (K+1)^(2)x+Ky-2K^(2)-2=0 passes through the point (m, n) for ...

    Text Solution

    |

  14. If A and B are non - singular matrices of order 3xx3, such that A=(adj...

    Text Solution

    |

  15. Line L(1)-=3x-4y+1=0 touches the cirlces C(1) and C(2). Centres of C(1...

    Text Solution

    |

  16. If lim(xrarroo)(ae^(x)+b cos x+c +dx)/(xsin^(2)x)=3, then the value of...

    Text Solution

    |

  17. A purse contains 10 ten rupee coins and 5 five rupee coins. Two coins ...

    Text Solution

    |

  18. If f(x)={{:(((2^(x)-1)^(2)tan3x)/(xsin^(2)x)":",0ltxltpi//6),(lambda"...

    Text Solution

    |

  19. If f:R rarr (0, pi//2], f(x)=sin^(-1)((40)/(x^(2)+x+lambda)) is a surj...

    Text Solution

    |

  20. If f:Rrarr R is a function defined as f(x^(3))=x^(5), AA x in R -{0} a...

    Text Solution

    |