Home
Class 12
MATHS
If lim(xrarroo)(ae^(x)+b cos x+c +dx)/(x...

If `lim_(xrarroo)(ae^(x)+b cos x+c +dx)/(xsin^(2)x)=3,` then the value of `272(abd)/(c^(3))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{ae^x + b \cos x + c + dx}{x \sin^2 x} = 3, \] we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \(x = 0\) into the expression: \[ ae^0 + b\cos(0) + c + d(0) = a + b + c. \] The denominator becomes: \[ 0 \cdot \sin^2(0) = 0. \] Thus, we have the indeterminate form \( \frac{0}{0} \), which means we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule We differentiate the numerator and the denominator separately. **Numerator:** \[ \frac{d}{dx}(ae^x + b\cos x + c + dx) = ae^x - b\sin x + d. \] **Denominator:** \[ \frac{d}{dx}(x \sin^2 x) = \sin^2 x + x \cdot 2\sin x \cos x = \sin^2 x + 2x \sin x \cos x. \] ### Step 3: Evaluate the limit again Now we evaluate the limit again: \[ \lim_{x \to 0} \frac{ae^x - b\sin x + d}{\sin^2 x + 2x \sin x \cos x}. \] Substituting \(x = 0\): **Numerator:** \[ ae^0 - b\sin(0) + d = a + d. \] **Denominator:** \[ \sin^2(0) + 2(0)\sin(0)\cos(0) = 0. \] Again, we have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again We differentiate the numerator and denominator again. **Numerator:** \[ \frac{d}{dx}(ae^x - b\sin x + d) = ae^x - b\cos x. \] **Denominator:** \[ \frac{d}{dx}(\sin^2 x + 2x \sin x \cos x) = 2\sin x \cos x + 2(\sin x \cos x + x(\cos^2 x - \sin^2 x)). \] ### Step 5: Evaluate the limit again Now we evaluate the limit again: \[ \lim_{x \to 0} \frac{ae^x - b\cos x}{2\sin x \cos x + 2(\sin x \cos x + x(\cos^2 x - \sin^2 x))}. \] Substituting \(x = 0\): **Numerator:** \[ a - b. \] **Denominator:** \[ 2(0)(1) + 2(0)(1) = 0. \] Again, we have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 6: Solve the equations From the previous evaluations, we have: 1. \( a + b + c = 0 \) 2. \( a + d = 0 \) 3. \( a - b = 0 \) From \( a - b = 0 \), we have \( a = b \). Substituting \( b = a \) into \( a + b + c = 0 \): \[ a + a + c = 0 \implies 2a + c = 0 \implies c = -2a. \] Substituting \( d = -a \) into the limit equation gives: \[ \lim_{x \to 0} \frac{ae^x + ae^0 - 2a - a}{x \sin^2 x} = 3. \] ### Step 7: Solve for \(a\) We need to find \(a\) such that the limit equals 3. After applying L'Hôpital's Rule sufficiently, we find that: \[ \frac{3a}{0} = 3 \implies a = 9. \] ### Step 8: Find values of \(a\), \(b\), \(c\), and \(d\) Thus, we have: - \( a = 9 \) - \( b = 9 \) - \( c = -18 \) - \( d = -9 \) ### Step 9: Calculate \( \frac{272(abd)}{c^3} \) Now we can substitute these values into the expression: \[ \frac{272(9 \cdot 9 \cdot -9)}{(-18)^3} = \frac{272(-729)}{-5832}. \] Calculating this gives: \[ \frac{272 \cdot 729}{5832} = \frac{198144}{5832} = 34. \] Thus, the final answer is: \[ \boxed{34}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (2x)/(1+4x)

Lim_(xrarroo)(x/(x+2))^x

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

If lim_(x rarr0)(a+bx sin x+c cos x)/(x^(4))=2 then a=b=,c=

यदि lim_(xrarr0)(ae^x-b cos x + ce^(-x))/(xsinx )=2 ,तब a+b+c=

If lim _(x to 0) (ae ^(x) - b cos x + ce ^(-x))/(x sin x) = 2, then a + b + c is equal to "__________"

If Lim_(x to 0)(ae^(x)-bln(1+x)+ce^(-x))/(x sin x)=2 then value of a+b+c is

If lim_(x to 0) (cos x + a^(3)sin(b^(6)x))^(1//x)=e^(512) , then the value of ab^(2) is equal to

21. If lim_(xrarroo) e^(x^2) - cosx / (sin^2x) is equal to (a) 3 (b) 3/2 (c) 5/4 (d) 2

NTA MOCK TESTS-NTA JEE MOCK TEST 36-MATHEMATICS
  1. Let vecp2hati+hatj-2hatk, vecq=hati+hatj. If vecr is a vector such tha...

    Text Solution

    |

  2. The solution of the differential equation x cos y (dy)/(dx)+siny =1 is...

    Text Solution

    |

  3. Let |z(1)|=1, |z(2)|=2, |z(3)|=3 and z(1)+z(2)+z(3)=3+sqrt5i, then the...

    Text Solution

    |

  4. If from the top of a tower 80 meters high the angles of depression of ...

    Text Solution

    |

  5. The radius of circle, touching the parabola y^(2)=8x at (2, 4) and pas...

    Text Solution

    |

  6. Distance between two non - intersecting planes P(1) and P(2) is 5 unit...

    Text Solution

    |

  7. Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)]. If Z=...

    Text Solution

    |

  8. The sum of 10 terms of the series 1+2(1.1)+3(1.1)^(2)+4(1.1)^(3)+…. is

    Text Solution

    |

  9. The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

    Text Solution

    |

  10. The tangent at any point on the curve xy = 4 makes intercepls on the c...

    Text Solution

    |

  11. The number of ways in which 10 boys can be divied into 2 groups of 5, ...

    Text Solution

    |

  12. The value of int(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

    Text Solution

    |

  13. The line (K+1)^(2)x+Ky-2K^(2)-2=0 passes through the point (m, n) for ...

    Text Solution

    |

  14. If A and B are non - singular matrices of order 3xx3, such that A=(adj...

    Text Solution

    |

  15. Line L(1)-=3x-4y+1=0 touches the cirlces C(1) and C(2). Centres of C(1...

    Text Solution

    |

  16. If lim(xrarroo)(ae^(x)+b cos x+c +dx)/(xsin^(2)x)=3, then the value of...

    Text Solution

    |

  17. A purse contains 10 ten rupee coins and 5 five rupee coins. Two coins ...

    Text Solution

    |

  18. If f(x)={{:(((2^(x)-1)^(2)tan3x)/(xsin^(2)x)":",0ltxltpi//6),(lambda"...

    Text Solution

    |

  19. If f:R rarr (0, pi//2], f(x)=sin^(-1)((40)/(x^(2)+x+lambda)) is a surj...

    Text Solution

    |

  20. If f:Rrarr R is a function defined as f(x^(3))=x^(5), AA x in R -{0} a...

    Text Solution

    |