Home
Class 12
MATHS
The value of the integral I=int(0)^(pi)[...

The value of the integral `I=int_(0)^(pi)[|sinx|+|cosx|]dx,` (where `[.]` denotes the greatest integer function) is equal to

A

1

B

2

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \lfloor |\sin x| + |\cos x| \rfloor \, dx \), we will follow these steps: ### Step 1: Analyze the expression \( |\sin x| + |\cos x| \) The functions \( |\sin x| \) and \( |\cos x| \) are both non-negative and periodic. Over the interval \( [0, \pi] \), we can observe the behavior of these functions. ### Step 2: Determine the maximum value of \( |\sin x| + |\cos x| \) - At \( x = 0 \), \( |\sin 0| + |\cos 0| = 0 + 1 = 1 \). - At \( x = \frac{\pi}{4} \), \( |\sin \frac{\pi}{4}| + |\cos \frac{\pi}{4}| = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2} \). - At \( x = \frac{\pi}{2} \), \( |\sin \frac{\pi}{2}| + |\cos \frac{\pi}{2}| = 1 + 0 = 1 \). - At \( x = \pi \), \( |\sin \pi| + |\cos \pi| = 0 + 1 = 1 \). Thus, the maximum value of \( |\sin x| + |\cos x| \) on the interval \( [0, \pi] \) is \( \sqrt{2} \). ### Step 3: Determine the range of \( |\sin x| + |\cos x| \) From the analysis: - The minimum value is \( 1 \) (at \( x = 0, \frac{\pi}{2}, \pi \)). - The maximum value is \( \sqrt{2} \) (at \( x = \frac{\pi}{4} \)). ### Step 4: Apply the greatest integer function Since \( 1 \leq |\sin x| + |\cos x| < \sqrt{2} \) and \( \sqrt{2} \approx 1.414 \), we can conclude: \[ \lfloor |\sin x| + |\cos x| \rfloor = 1 \quad \text{for all } x \in [0, \pi]. \] ### Step 5: Evaluate the integral Now we can substitute this result into the integral: \[ I = \int_{0}^{\pi} \lfloor |\sin x| + |\cos x| \rfloor \, dx = \int_{0}^{\pi} 1 \, dx. \] Calculating this integral gives: \[ I = [x]_{0}^{\pi} = \pi - 0 = \pi. \] ### Final Answer Thus, the value of the integral \( I \) is \( \pi \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 45

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 47

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

If I=int_(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest integer function) then the value of I is

The value of int_(0)^(2017)sin(x-[x])dx : (where [ . ] denotes the greatest integer function) is equal to

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

NTA MOCK TESTS-NTA JEE MOCK TEST 46-MATHEMATICS
  1. The exponent of 7 in 100C50 is

    Text Solution

    |

  2. If alpha and beta are the solution of sinx=-(1)/(2) in [0, 2pi] and al...

    Text Solution

    |

  3. The value of the integral I=int(0)^(pi)[|sinx|+|cosx|]dx, (where [.] d...

    Text Solution

    |

  4. The value of lim(xrarr0)(secx+tanx)^(1)/(x) is equal to

    Text Solution

    |

  5. The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (...

    Text Solution

    |

  6. The solution of the differential equation y(sin^(2)x)dy+(sinxcosx)y^(2...

    Text Solution

    |

  7. The negation of (~p ^^ q) vv (p ^^ ~ q) is

    Text Solution

    |

  8. If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [...

    Text Solution

    |

  9. If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integratio...

    Text Solution

    |

  10. Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-h...

    Text Solution

    |

  11. The chords passing through (2, 1) intersect the hyperbola (x^(2))/(16)...

    Text Solution

    |

  12. If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0, then the number of v...

    Text Solution

    |

  13. A box contains x red balls and 10 black balls. 3 balls are drawn one b...

    Text Solution

    |

  14. The equation of the external bisector of angleBAC" to "DeltaABC with v...

    Text Solution

    |

  15. Chord joining two distinct point P(a, 4b) and Q(c, -(16)/(b)) (both ar...

    Text Solution

    |

  16. A plane P = 0 passing through the point (1, 1, 1) is perpendicular to ...

    Text Solution

    |

  17. Let the complex numbers Z(1), Z(2) and Z(3) are the vertices A, B and ...

    Text Solution

    |

  18. Let A be the centre of the circle x^(2)+y^(2)-2x-4y-20=0. If the tange...

    Text Solution

    |

  19. If the coefficient of x^(6) in the expansion of (2+x)^(3)(3+x)^(2)(5+x...

    Text Solution

    |

  20. The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15)...

    Text Solution

    |