Home
Class 12
MATHS
If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",...

If `f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):}` (where `[.]` denotes the greatest integer integer function), then

A

`f(x)` is continuous at x = 0

B

`lim_(xrarr0^(+))f(x)=-1`

C

`lim_(xrarr0^(-))f(x)=1`

D

`lim_(rarr0^(+))f(x)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) given by: \[ f(x) = \begin{cases} \frac{e^{|x| + |x| - 1}}{|x| + |x|} & \text{if } x \neq 0 \\ -1 & \text{if } x = 0 \end{cases} \] We need to check the continuity of \( f(x) \) at \( x = 0 \). For \( f(x) \) to be continuous at \( x = 0 \), the following condition must hold: \[ \lim_{x \to 0} f(x) = f(0) \] ### Step 1: Calculate \( f(0) \) From the definition of the function, we have: \[ f(0) = -1 \] ### Step 2: Calculate the Left-Hand Limit \( \lim_{x \to 0^-} f(x) \) For \( x < 0 \), we have \( |x| = -x \). Therefore, we can rewrite the function as: \[ f(x) = \frac{e^{-x - x - 1}}{-x - x} = \frac{e^{-2x - 1}}{-2x} \] Now, we need to find the limit as \( x \) approaches \( 0 \) from the left: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{-2x - 1}}{-2x} \] As \( x \to 0^- \), \( e^{-2x - 1} \) approaches \( e^{-1} \) and the denominator approaches \( 0^- \), leading to: \[ \lim_{x \to 0^-} f(x) = \frac{e^{-1}}{0^-} = -\infty \] ### Step 3: Calculate the Right-Hand Limit \( \lim_{x \to 0^+} f(x) \) For \( x > 0 \), we have \( |x| = x \). Therefore, we can rewrite the function as: \[ f(x) = \frac{e^{x + x - 1}}{x + x} = \frac{e^{2x - 1}}{2x} \] Now, we need to find the limit as \( x \) approaches \( 0 \) from the right: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{2x - 1}}{2x} \] As \( x \to 0^+ \), \( e^{2x - 1} \) approaches \( e^{-1} \) and the denominator approaches \( 0^+ \), leading to: \[ \lim_{x \to 0^+} f(x) = \frac{e^{-1}}{0^+} = +\infty \] ### Step 4: Conclusion Since the left-hand limit \( \lim_{x \to 0^-} f(x) = -\infty \) and the right-hand limit \( \lim_{x \to 0^+} f(x) = +\infty \), we find that: \[ \lim_{x \to 0} f(x) \text{ does not exist} \] Since the limit does not exist and does not equal \( f(0) = -1 \), we conclude that the function \( f(x) \) is not continuous at \( x = 0 \). ### Final Answer The function \( f(x) \) is not continuous at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 45

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 47

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

NTA MOCK TESTS-NTA JEE MOCK TEST 46-MATHEMATICS
  1. The value of lim(xrarr0)(secx+tanx)^(1)/(x) is equal to

    Text Solution

    |

  2. The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (...

    Text Solution

    |

  3. The solution of the differential equation y(sin^(2)x)dy+(sinxcosx)y^(2...

    Text Solution

    |

  4. The negation of (~p ^^ q) vv (p ^^ ~ q) is

    Text Solution

    |

  5. If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [...

    Text Solution

    |

  6. If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integratio...

    Text Solution

    |

  7. Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-h...

    Text Solution

    |

  8. The chords passing through (2, 1) intersect the hyperbola (x^(2))/(16)...

    Text Solution

    |

  9. If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0, then the number of v...

    Text Solution

    |

  10. A box contains x red balls and 10 black balls. 3 balls are drawn one b...

    Text Solution

    |

  11. The equation of the external bisector of angleBAC" to "DeltaABC with v...

    Text Solution

    |

  12. Chord joining two distinct point P(a, 4b) and Q(c, -(16)/(b)) (both ar...

    Text Solution

    |

  13. A plane P = 0 passing through the point (1, 1, 1) is perpendicular to ...

    Text Solution

    |

  14. Let the complex numbers Z(1), Z(2) and Z(3) are the vertices A, B and ...

    Text Solution

    |

  15. Let A be the centre of the circle x^(2)+y^(2)-2x-4y-20=0. If the tange...

    Text Solution

    |

  16. If the coefficient of x^(6) in the expansion of (2+x)^(3)(3+x)^(2)(5+x...

    Text Solution

    |

  17. The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15)...

    Text Solution

    |

  18. The number of all possible symmetric matrices of order 3xx3 with each ...

    Text Solution

    |

  19. The mean of 40 observations 20 and their standard deviation is 5. If t...

    Text Solution

    |

  20. If I(n)=(d^(n))/(dx^(n))(x^(n)lnx), then the value of (1)/(50)(I(7)-7I...

    Text Solution

    |