Home
Class 12
MATHS
Let veca=2hati+3hatj+4hatk, vecb=hati-2h...

Let `veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk` and `vecc=hati+hatj-hatk.` If `vecr xx veca =vecb` and `vecr.vec c=3,` then the value of `|vecr|` is equal to

A

`sqrt(155)`

B

`sqrt(17)`

C

`2sqrt(17)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \quad \vec{b} = \hat{i} - 2\hat{j} + \hat{k}, \quad \vec{c} = \hat{i} + \hat{j} - \hat{k} \] We know: \[ \vec{r} \times \vec{a} = \vec{b} \] \[ \vec{r} \cdot \vec{c} = 3 \] ### Step 1: Calculate \(\vec{a} \cdot \vec{c}\) To find \(\vec{a} \cdot \vec{c}\): \[ \vec{a} \cdot \vec{c} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) \] Calculating the dot product: \[ = 2 \cdot 1 + 3 \cdot 1 + 4 \cdot (-1) = 2 + 3 - 4 = 1 \] ### Step 2: Use the relation from the cross product From the relation \(\vec{r} \times \vec{a} = \vec{b}\), we can express it in terms of the scalar triple product: \[ \vec{r} \times \vec{a} = \vec{b} \implies \vec{r} \cdot \vec{c} \cdot \vec{a} - \vec{a} \cdot \vec{c} \cdot \vec{r} = \vec{b} \times \vec{c} \] ### Step 3: Substitute known values We know that \(\vec{r} \cdot \vec{c} = 3\) and \(\vec{a} \cdot \vec{c} = 1\): \[ 3\vec{a} - 1\vec{r} = \vec{b} \times \vec{c} \] ### Step 4: Calculate \(\vec{b} \times \vec{c}\) Now, we need to calculate \(\vec{b} \times \vec{c}\): \[ \vec{b} = \hat{i} - 2\hat{j} + \hat{k}, \quad \vec{c} = \hat{i} + \hat{j} - \hat{k} \] Using the determinant method: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ 1 & 1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i}((-2)(-1) - (1)(1)) - \hat{j}((1)(-1) - (1)(1)) + \hat{k}((1)(1) - (-2)(1)) \] \[ = \hat{i}(2 - 1) - \hat{j}(-1 - 1) + \hat{k}(1 + 2) \] \[ = \hat{i}(1) + \hat{j}(2) + \hat{k}(3) = \hat{i} + 2\hat{j} + 3\hat{k} \] ### Step 5: Substitute back into the equation Now substituting back: \[ 3\vec{a} - \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} \] Substituting \(\vec{a}\): \[ 3(2\hat{i} + 3\hat{j} + 4\hat{k}) - \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} \] \[ (6\hat{i} + 9\hat{j} + 12\hat{k}) - \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} \] Rearranging gives: \[ \vec{r} = (6\hat{i} + 9\hat{j} + 12\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) \] \[ = (6 - 1)\hat{i} + (9 - 2)\hat{j} + (12 - 3)\hat{k} = 5\hat{i} + 7\hat{j} + 9\hat{k} \] ### Step 6: Find the modulus of \(\vec{r}\) Now, we find \(|\vec{r}|\): \[ |\vec{r}| = \sqrt{(5)^2 + (7)^2 + (9)^2} = \sqrt{25 + 49 + 81} = \sqrt{155} \] Thus, the value of \(|\vec{r}|\) is \(\sqrt{155}\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 45

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 47

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If vec a=3hati-hatj+4hatk, vecb=2hati+3hatj-hatk and vec c=-5hati+2hatj+3hatk , then vec a.(vecb xx vec c) is

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Let vec a=hati+2hatj-hatk , vec b=hati-hatj , vec c=hati-hatj-hatk ,and vecrxxveca = vecc xx veca , vecr*vecb=0 . Find vecr*veca

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=x hati+y hatj+z hatk, vecb=y hati+z hatj+x hatk, and vec c=z hati+x hatj+y hatk , then veca xx (vecb xx vec c) is :

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk and vecc= hati+hatj-hatk A vector in the plane of veca and vecb whose projections on vecc is 1//sqrt3 is

NTA MOCK TESTS-NTA JEE MOCK TEST 46-MATHEMATICS
  1. The value of lim(xrarr0)(secx+tanx)^(1)/(x) is equal to

    Text Solution

    |

  2. The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (...

    Text Solution

    |

  3. The solution of the differential equation y(sin^(2)x)dy+(sinxcosx)y^(2...

    Text Solution

    |

  4. The negation of (~p ^^ q) vv (p ^^ ~ q) is

    Text Solution

    |

  5. If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [...

    Text Solution

    |

  6. If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integratio...

    Text Solution

    |

  7. Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-h...

    Text Solution

    |

  8. The chords passing through (2, 1) intersect the hyperbola (x^(2))/(16)...

    Text Solution

    |

  9. If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0, then the number of v...

    Text Solution

    |

  10. A box contains x red balls and 10 black balls. 3 balls are drawn one b...

    Text Solution

    |

  11. The equation of the external bisector of angleBAC" to "DeltaABC with v...

    Text Solution

    |

  12. Chord joining two distinct point P(a, 4b) and Q(c, -(16)/(b)) (both ar...

    Text Solution

    |

  13. A plane P = 0 passing through the point (1, 1, 1) is perpendicular to ...

    Text Solution

    |

  14. Let the complex numbers Z(1), Z(2) and Z(3) are the vertices A, B and ...

    Text Solution

    |

  15. Let A be the centre of the circle x^(2)+y^(2)-2x-4y-20=0. If the tange...

    Text Solution

    |

  16. If the coefficient of x^(6) in the expansion of (2+x)^(3)(3+x)^(2)(5+x...

    Text Solution

    |

  17. The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15)...

    Text Solution

    |

  18. The number of all possible symmetric matrices of order 3xx3 with each ...

    Text Solution

    |

  19. The mean of 40 observations 20 and their standard deviation is 5. If t...

    Text Solution

    |

  20. If I(n)=(d^(n))/(dx^(n))(x^(n)lnx), then the value of (1)/(50)(I(7)-7I...

    Text Solution

    |